某程序框圖如圖所示,現(xiàn)輸入四個函數(shù)(1)f(x)=x2,(2)f(x)=
1
x
,(3)f(x)=ln x+2x-6,(4)f(x)=sin x,則輸出函數(shù)是
 
考點:程序框圖
專題:算法和程序框圖
分析:本題的框圖是一個選擇結(jié)構(gòu),其算法是找出即是奇函數(shù)存在零點的函數(shù),由此規(guī)則對四個選項進(jìn)行比對,即可得出正確選項.
解答: 由程序中各變量、各語句的作用,再根據(jù)流程圖所示的順序,可知:
該程序的作用是輸出滿足條件①f(x)+f(-x)=0,即函數(shù)f(x)為奇函數(shù)
②f(x)存在零點,即函數(shù)圖象與x軸有交點.
(1).∵f(x)=x2,不是奇函數(shù),故不滿足條件①
(2).∵f(x)=
1
x
的函數(shù)圖象與x軸沒有交點,故不滿足條件②
(3).∵f(x)=lnx+2x-6的定義域(0,+∞)不關(guān)于原點對稱,故函數(shù)為非奇非偶函數(shù),故不滿足條件①
(4).∵f(x)=sinx既是奇函數(shù),而且函數(shù)圖象與x也有交點,故D:f(x)=sinx符合輸出的條件
故答案為:(4).
點評:本題考查選擇結(jié)構(gòu),解答本題的關(guān)鍵是根據(jù)框圖得出函數(shù)所滿足的性質(zhì),然后比對四個選項中的函數(shù),對四個函數(shù)的性質(zhì)比較了解也是判斷出正確答案的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知曲線C1的參數(shù)方程是
x=2sinα
y=2+2cosα
(α是參數(shù)).現(xiàn)以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)寫出曲線C1的極坐標(biāo)方程;
(2)曲線C2的極坐標(biāo)方程是ρ=2,求曲線C2與曲線C1的交點的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
,
b
的夾角為
π
3
,|
a
|=2,|
b
|=1,則|
a
+
b
|•|
a
-
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,若2cos2
A+B
2
=1-cos2C,c-b=4,且a,b,c成等差數(shù)列,則△ABC的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)字2,3組成五位數(shù),且數(shù)字2,3至少都出現(xiàn)一次,這樣的五位數(shù)共有
 
個.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項為a1,公差為d(0<d<2π)的等差數(shù)列,若數(shù)列{cosan}是等比數(shù)列,則其公比為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某程序框圖如圖所示,則該程序運行后輸出的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m>0,n>0,向量
a
=(1,1),向量
b
=(m,n-3),且
a
⊥(
a
+
b
),則
1
m
+
4
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若loga
2
<1,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案