已知x,y∈Z,n∈N*,設(shè)f(n)是不等式組數(shù)學(xué)公式,表示的平面區(qū)域內(nèi)可行解的個(gè)數(shù),由此可推出f(1)=1,f(2)=3,…,則f(10)=


  1. A.
    45
  2. B.
    55
  3. C.
    60
  4. D.
    100
B
分析:根據(jù)約束條件,畫(huà)出可行域,利用數(shù)形結(jié)合,分析圖象,給出f(1)及f(2)的值,現(xiàn)根據(jù)f(1)、f(2)的值,進(jìn)行歸納總結(jié),推斷出f(n)的表達(dá)式,從而得出f(10).
解答:解:根據(jù)約束條件畫(huà)出可行域如右圖:
當(dāng)n=1時(shí),可行域內(nèi)的整點(diǎn)只有(1,0)點(diǎn),
∴f(1)=1,
當(dāng)n=2時(shí),可行域內(nèi)的整點(diǎn)有(1,0)、(2,0)、(1,1),
∴f(2)=3,

由此可歸納出f(n)=1+2+3+…+n=
故f(10)=55
故選B
點(diǎn)評(píng):要判斷可行域內(nèi)整數(shù)可行解的個(gè)數(shù),我們可以根據(jù)約束條件畫(huà)出可行域,然后根據(jù)圖象,結(jié)合數(shù)形分析的思想,進(jìn)行判斷,如果某個(gè)點(diǎn)與可行域的邊界的關(guān)系很難確定,也可以將該點(diǎn)坐標(biāo)代入邊界直線(xiàn)的方程,根據(jù)所得的符合,對(duì)點(diǎn)的位置進(jìn)行判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈Z,n∈N*,設(shè)f(n)是不等式組
x≥1
0≤y≤-x+n
,表示的平面區(qū)域內(nèi)可行解的個(gè)數(shù),由此可推出f(1)=1,f(2)=3,…,則f(10)=( 。
A、45B、55C、60D、100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈Z,n∈N*,設(shè)f(n)是不等式組
x≥1
0≤y≤-x+n
表示的平面區(qū)域內(nèi)可行解的個(gè)數(shù),則f(1)=
 
;f(2)=
 
;f (n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y∈Z,n∈N*,設(shè)f(n)是不等式組
x≥1
0≤y≤-x+n
,表示的平面區(qū)域內(nèi)可行解的個(gè)數(shù),歸納推理f(n)=
n(n+1)
2
n(n+1)
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年福建省龍巖一中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知x,y∈Z,n∈N*,設(shè)f(n)是不等式組,表示的平面區(qū)域內(nèi)可行解的個(gè)數(shù),由此可推出f(1)=1,f(2)=3,…,則f(10)=( )
A.45
B.55
C.60
D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省名校高三數(shù)學(xué)一輪復(fù)習(xí)綜合測(cè)試(四)(解析版) 題型:解答題

已知x,y∈Z,n∈N*,設(shè)f(n)是不等式組表示的平面區(qū)域內(nèi)可行解的個(gè)數(shù),則f(1)=    ;f(2)=    ;f (n)=   

查看答案和解析>>

同步練習(xí)冊(cè)答案