設(shè)集合A={α|α=k•180°+90°,k∈z}∪{α|α=k•180°,k∈z},集合B={β|β=k•90°,k∈z},則( 。
A、A?BB、A?B
C、A∩B=∅D、A=B
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:根據(jù)集合相等的定義即可證明結(jié)論.
解答: 解:∵B={β|β=k×90°,k∈Z},
∴當(dāng)k為偶數(shù),即k=2n時(shí),n∈Z,β=k×90°=2n×90°=n×180°,
∴當(dāng)k為奇數(shù),即k=2n+1時(shí),n∈Z,β=k×90°=(2n+1)×90°=n×180°+90°,n∈Z
∴A=B.
故選D.
點(diǎn)評(píng):本題主要考查集合相等的判斷,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠用甲、乙兩種不同工藝生產(chǎn)一大批同一種零件,零件尺寸均在[21.7,22.3](單位:cm)之間,把零件尺寸在[21.9,22.1)的記為一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的記為二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的記為三等品,現(xiàn)從甲、乙工藝生產(chǎn)的零件中各隨機(jī)抽取100件產(chǎn)品,所得零件尺寸的頻率分布直方圖如圖所示:

(1)根據(jù)上述數(shù)據(jù)完成下列2×2列聯(lián)表,根據(jù)此數(shù)據(jù)你是否有95%的把握認(rèn)為選擇不同的工藝與生產(chǎn)出一等品有關(guān)?
甲工藝乙工藝合計(jì)
一等品
非一等品
合計(jì)
P(K2≥k00.050.01
k03.8416.635
(2)若一等品、二等品、三等品的單件利潤(rùn)分別為30元、20元、15元,求出上述甲工藝所抽取的100件產(chǎn)品的單件利潤(rùn)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-x2(x≤3)
1
x
(x>3)
,則f(f(4))的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若復(fù)數(shù)a=3+2i,b=4+mi,要使復(fù)數(shù)
a
b
為純虛數(shù),則實(shí)數(shù)m的值為( 。
A、-6
B、6
C、
8
3
D、-
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x11+ax5-
b
x
+2,f(-2)=6,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1開口向上,g(x)=log 
1
2
f(x).
(1)令b=-3,若g(x)在x∈[1,2]上單凋遞減,求a的取值范圍;
(2)若f(x+2)為偶函數(shù),定義區(qū)間[m,n]的長(zhǎng)度為n-m,問(wèn)是否存在常數(shù)a,使得函數(shù)y=f(x)在區(qū)間[a,3]且a≥1的值域?yàn)镈,且D的長(zhǎng)度為10-a2?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=2sin(2x+
π
3
)+1的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
4x
4x+2

(1)求證:函數(shù)f(x)的圖象的對(duì)稱中心是(
1
2
,
1
2
);
(2)求f(
1
101
)+f(
2
101
)+…+f(
100
101
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的焦距為2,左右焦點(diǎn)為F1、F2,過(guò)右焦點(diǎn)F2的直線l交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若△ABF1的面積為
12
2
7
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案