求函數(shù)y=2sin(2x+
π
3
)+1的增區(qū)間.
考點:正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)條件利用正弦函數(shù)的單調(diào)增區(qū)間,求出函數(shù)的遞增區(qū)間即可得到結(jié)論.
解答: 解:∵y=2sin(2x+
π
3
)+1,
∴由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
,k∈Z.
得kπ-
12
≤x≤kπ+
π
12
,k∈Z.
∴函數(shù)的單調(diào)遞增區(qū)間為[kπ-
12
,kπ+
π
12
],k∈Z.
點評:本題主要考查正弦函數(shù)的單調(diào)性的應(yīng)用,要求熟練掌握三角函數(shù)的圖象和性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三個不相等的實數(shù)a,b,c成等差數(shù)列,且a,c,b成等比數(shù)列,則
a
b
等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

使得函數(shù)f(x)=
1
5
x2-
4
5
x-
7
5
(a≤x≤b)的值域為[a,b](a<b)的實數(shù)對(a,b)有
 
對.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={α|α=k•180°+90°,k∈z}∪{α|α=k•180°,k∈z},集合B={β|β=k•90°,k∈z},則(  )
A、A?BB、A?B
C、A∩B=∅D、A=B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,x2+2ax+a>0”的否定為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(-1,2),
b
=(5,8),
c
=(2,3),求
a
•(
b
c
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)f(x)=
2+x2
+
1
2+x2
有最小值;
②“x2-4x-5=0”的一個必要不充分條件是“x=5”;
③命題 p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧(?q)”是假命題;
④函數(shù) f(x)=x3-3x2+1 在點(2,f(2))處的切線方程為y=-3 
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓柱的高為4cm,底面半徑為3cm,上底面一條半徑OA與下底面一條半徑O′B′成60°角,求:
(1)直線AB′與圓柱的軸OO′所成的角(用反三角函數(shù)值表示);
(2)直線AB′與平面OAA′O′所成角的大小;
(3)點A沿圓柱側(cè)面到達(dá)點B′的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次考試中,要從20道題中隨機地抽出6道題,若考生至少能答對其中的4道題即可通過:若至少能答對其中的5道題就獲得優(yōu)秀,已知某考生能答對其中的10道題,并且知道他在這次考試中已經(jīng)通過,則他獲得優(yōu)秀成績的概率是
 

查看答案和解析>>

同步練習(xí)冊答案