設
分別是橢圓
的 左,右焦點。
(1)若P是該橢圓上一個動點,求
的 最大值和最小值。
(2)設過定點M(0,2)的 直線l與橢圓交于不同的兩點A、B,且∠AOB為銳角(其中O為坐標原點),求直線l斜率k的取值范圍。
(1)最小值-2,最大值1
(2)
(1)易知a=2,b=1,c=
,所以
設 P(x,y),則
因為
,故當x=0,時有 最小值-2:當
時,有最大值1.
(2)顯然直線x=0不滿足題設條件,故設直線l:y=kx+2
由方程組
消去y得:
,設
則
,又
,
所以k的 取值范圍是:
。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(14分)(2011•湖北)平面內(nèi)與兩定點A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點的軌跡,加上A1、A2兩點所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關系;
(Ⅱ)當m=﹣1時,對應的曲線為C1;對給定的m∈(﹣1,0)∪(0,+∞),對應的曲線為C2,設F1、F2是C2的兩個焦點.試問:在C1上,是否存在點N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在平面直角坐標系
中,已知
,
,
是橢圓
上不同的三點,
,
,
在第三象限,線段
的中點在直線
上.
(1)求橢圓的標準方程;
(2)求點
C的坐標;
(3)設動點
在橢圓上(異于點
,
,
)且直線
PB,
PC分別交直線
OA于
,
兩點,證明
為定值并求出該定值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖是拋物線形拱橋,當水面離橋頂4m時,水面寬8m;
(1)試建立坐標系,求拋物線的標準方程;
(2)若水面上升1m,則水面寬是多少米?
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
平面上以機器人在行進中始終保持與點
的距離和到直線
的距離相等.若機器人接觸不到過點
且斜率為
的直線,則
的取值范圍是___________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的左右頂點分別為
,離心率
.
(1)求橢圓的方程;
(2)若點
為曲線
:
上任一點(
點不同于
),直線
與直線
交于點
,
為線段
的中點,試判斷直線
與曲線
的位置關系,并證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線
的焦點為
,則
________,
過點
向其準線作垂線,記與拋物線的交點為
,則
_____.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
(2014·武漢模擬)圓(x-a)2+y2=1與雙曲線x2-y2=1的漸近線相切,則a的值是________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設雙曲線
=1(a>0,b>0)的漸近線與拋物線y=x
2+1相切,則該雙曲線的離心率等于( )
查看答案和解析>>