【題目】已知函數(shù),若存在,使得關(guān)于的不等式恒成立,則的取值范圍為

A. B. C. D.

【答案】A

【解析】

解法1:變換主元研究函數(shù),進而令的單調(diào)性. 解法2:按照和當(dāng)對函數(shù)進行求導(dǎo),討論單調(diào)性.

解法1:(1)當(dāng)時,,所以;

2)當(dāng)時,令,

因為存在,使得,等價于,

所以,存在,使得關(guān)于的不等式恒成立,

等價于恒成立.

),則,所以單調(diào)遞增,

所以,即;

3)當(dāng)時,因為,所以,

所以要存在,使得關(guān)于的不等式恒成立,

等價于恒成立.

),則單調(diào)遞減,所以,即.

綜上,得.

解法2,

1)當(dāng)時,,所以單調(diào)遞減,且當(dāng)趨向于時,趨向于,與不等式恒成立矛盾,舍去;

2)當(dāng)時,令,,所以在區(qū)間單調(diào)遞增;

,,所以在區(qū)間單調(diào)遞減;

所以存在,使得成立.

,,

所以:當(dāng)時,單調(diào)遞增;

當(dāng)時,,單調(diào)遞減.

所以,即.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知遞增數(shù)列共有2019項,且各項均不為零,,若從數(shù)列中任取兩項,,當(dāng)時,仍是數(shù)列中的項,則數(shù)列中的各項和______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市的華為手機專賣店對該市市民使用華為手機的情況進行調(diào)查.在使用華為手機的用戶中,隨機抽取100名,按年齡(單位:歲)進行統(tǒng)計的頻率分布直方圖如圖:

(1)根據(jù)頻率分布直方圖,分別求出樣本的平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點值作代表)和中位數(shù)的估計值(均精確到個位);

(2)在抽取的這100名市民中,按年齡進行分層抽樣,抽取20人參加華為手機宣傳活動,現(xiàn)從這20人中,隨機選取2人各贈送一部華為手機,求這2名市民年齡都在內(nèi)的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,射線均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線上.經(jīng)測量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營,打算在扇形區(qū)域外修建一條公路,分別與射線、交于兩點,并要求與扇形弧相切于點.設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計.

(1)試將公路的長度表示為的函數(shù),并寫出的取值范圍;

(2)試確定的值,使得公路的長度最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合均為實數(shù)集的子集,記.

(1)已知,試用列舉法表示;

(2)設(shè),當(dāng)時,曲線的焦距為,如果,,設(shè)中的所有元素之和為,求的值;

3)在(2)的條件下,對于滿足,且的任意正整數(shù),不等式恒成立, 求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為的正方形中,線段BC的端點分別在邊上滑動,且,現(xiàn)將分別沿AB,AC折起使點重合,重合后記為點,得到三被錐.現(xiàn)有以下結(jié)論:

平面;

②當(dāng)分別為的中點時,三棱錐的外接球的表面積為

的取值范圍為;

④三棱錐體積的最大值為.

則正確的結(jié)論的個數(shù)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知是曲線上的動點,將繞點順時針旋轉(zhuǎn)得到,設(shè)點的軌跡為曲線.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線,的極坐標(biāo)方程;

2)在極坐標(biāo)系中,點,射線與曲線,分別相交于異于極點兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

1)當(dāng)時,求曲線在點處的切線方程;

2)當(dāng)時,求證:函數(shù)恰有兩個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某次高三年級模擬考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從A,B兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,作為下一步教學(xué)的參考依據(jù),計劃從900名考生的選做題成績中隨機抽取一個容量為10的樣本,為此將900名考生選做題的成績按照隨機順序依次編號為001~900.

1)若采用系統(tǒng)抽樣法抽樣,從編號為001~090的成績中用簡單隨機抽樣確定的成績編號為025,求樣本中所有成績編號之和;

2)若采用分層抽樣,按照學(xué)生選擇A題目或B題目,將成績分為兩層.已知該校高三學(xué)生有540人選做A題目,有360人選做B題目,選取的樣本中,A題目的成績平均數(shù)為5,方差為2B題目的成績平均數(shù)為5.5,方差為0.25.

i)用樣本估計該校這900名考生選做題得分的平均數(shù)與方差;

ii)本選做題閱卷分值都為整數(shù),且選取的樣本中,A題目成績的中位數(shù)和B題目成績的中位數(shù)都是5.5.從樣本中隨機選取兩個大于樣本平均值的數(shù)據(jù)做進一步調(diào)查,求取到的兩個成績來自不同題目的概率.

查看答案和解析>>

同步練習(xí)冊答案