甲、乙兩名教師進(jìn)行乒乓球比賽,采用七局四勝制(先勝四局者獲勝).若每一局比賽甲獲勝的概率為,乙獲勝的概率為,現(xiàn)已賽完兩局,乙暫時(shí)以2∶0領(lǐng)先.
(1)求甲獲得這次比賽勝利的概率;
(2)設(shè)比賽結(jié)束時(shí)比賽的局?jǐn)?shù)為隨機(jī)變量X,求隨機(jī)變量X的概率分布和數(shù)學(xué)期望EX.
(1) 甲獲得這次比賽勝利的概率為;(2) X的概率分布為:
X
4
5
6
7
P
?
?
?
?

試題分析:(1)甲獲得這次比賽勝利情況有二,一是比賽六局結(jié)束,甲連續(xù)贏了四局,一是比賽了七局,甲在后五局中贏了四局,且最后一局是甲贏,顯然這兩種情況彼此互斥,故分別計(jì)算出這兩個(gè)事件的概率,求其和即得甲獲得這次比賽勝利的概率.(2)設(shè)比賽結(jié)束時(shí)比賽的局?jǐn)?shù)為,由題意得隨機(jī)變量可能的取值為4,5,6,7,分別求出隨機(jī)變量的概率,從而得分布列和數(shù)學(xué)期望.本題考查次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生次的概率,解題的關(guān)鍵是正確理解兩個(gè)事件、“甲獲得這次比賽勝利”,再由概率的計(jì)算公式計(jì)算出概率.本題是概率中的有一定綜合性的題,對(duì)事件正確理解與分類(lèi)是很關(guān)鍵.
試題解析:(1)設(shè)甲獲勝為事件A,則甲獲勝包括甲以4∶2獲勝和甲以4∶3獲勝兩種情況.
設(shè)甲以4∶2獲勝為事件A1,則      2分
設(shè)甲以4∶3獲勝為事件A2,則   5分
P(A)=.         6分
(2)隨機(jī)變量可能的取值為4,5,6,7,
=.
.
.
.
X的概率分布為:
X
4
5
6
7
P
?
?
?
?
       12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

長(zhǎng)沙市某中學(xué)在每年的11月份都會(huì)舉行“社團(tuán)文化節(jié)”,開(kāi)幕式當(dāng)天組織舉行大型的文藝表演,同時(shí)邀請(qǐng)36名不同社團(tuán)的社長(zhǎng)進(jìn)行才藝展示.其中有的社長(zhǎng)是高中學(xué)生,的社長(zhǎng)是初中學(xué)生,高中社長(zhǎng)中有是高一學(xué)生,初中社長(zhǎng)中有是初二學(xué)生.
(1)若校園電視臺(tái)記者隨機(jī)采訪3位社長(zhǎng),求恰有1人是高一學(xué)生且至少有1人是初中學(xué)生的概率;
(2)若校園電視臺(tái)記者隨機(jī)采訪3位初中學(xué)生社長(zhǎng),設(shè)初二學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在兩個(gè)不同的口袋中,各裝有大小、形狀完全相同的1個(gè)紅球、2個(gè)黃球.現(xiàn)分別從每一個(gè)口袋中各任取2個(gè)球,設(shè)隨機(jī)變量為取得紅球的個(gè)數(shù).
(Ⅰ)求的分布列;
(Ⅱ)求的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在(1+x)+(1+x)2+(1+x)3+(1+x)4的展開(kāi)式中,x2項(xiàng)的系數(shù)是______(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙兩支排球隊(duì)進(jìn)行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束,除第五局甲隊(duì)獲勝的概率是外,其余每局比賽甲隊(duì)獲勝的概率都是,假設(shè)各局比賽結(jié)果相互獨(dú)立.
(1)分別求甲隊(duì)以3∶0,3∶1,3∶2勝利的概率;
(2)若比賽結(jié)果為3∶0或3∶1,則勝利方得3分,對(duì)方得0分;若比賽結(jié)果為3∶2,則勝利方得2分、對(duì)方得1分.求乙隊(duì)得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

袋內(nèi)有5個(gè)白球,6個(gè)紅球,從中摸出兩球,記X=則X的分布列為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在某社區(qū)舉辦的《有獎(jiǎng)知識(shí)問(wèn)答比賽》中,甲、乙、丙三人同時(shí)回答某一道題,已知甲回答對(duì)這道題的概率是,甲、丙二人都回答錯(cuò)的概率是,乙、丙二人都回答對(duì)的概率是
(Ⅰ)求乙、丙二人各自回答對(duì)這道題的概率;
(Ⅱ)設(shè)乙、丙二人中回答對(duì)該題的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)隨機(jī)變量X的概率分布為
X
1
2
3
4
P

m


則P(|X-3|=1)=     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若隨機(jī)變量X的概率分布密度函數(shù)是φμ,σ(x)= (x∈R),則E(2X-1)=(  ).
A.-1B.-2
C.-4D.-5

查看答案和解析>>

同步練習(xí)冊(cè)答案