甲、乙兩名教師進行乒乓球比賽,采用七局四勝制(先勝四局者獲勝).若每一局比賽甲獲勝的概率為,乙獲勝的概率為,現(xiàn)已賽完兩局,乙暫時以2∶0領先.
(1)求甲獲得這次比賽勝利的概率;
(2)設比賽結(jié)束時比賽的局數(shù)為隨機變量X,求隨機變量X的概率分布和數(shù)學期望EX.
(1) 甲獲得這次比賽勝利的概率為;(2) X的概率分布為:
X
4
5
6
7
P
?
?
?
?

試題分析:(1)甲獲得這次比賽勝利情況有二,一是比賽六局結(jié)束,甲連續(xù)贏了四局,一是比賽了七局,甲在后五局中贏了四局,且最后一局是甲贏,顯然這兩種情況彼此互斥,故分別計算出這兩個事件的概率,求其和即得甲獲得這次比賽勝利的概率.(2)設比賽結(jié)束時比賽的局數(shù)為,由題意得隨機變量可能的取值為4,5,6,7,分別求出隨機變量的概率,從而得分布列和數(shù)學期望.本題考查次獨立重復試驗中恰好發(fā)生次的概率,解題的關鍵是正確理解兩個事件、“甲獲得這次比賽勝利”,再由概率的計算公式計算出概率.本題是概率中的有一定綜合性的題,對事件正確理解與分類是很關鍵.
試題解析:(1)設甲獲勝為事件A,則甲獲勝包括甲以4∶2獲勝和甲以4∶3獲勝兩種情況.
設甲以4∶2獲勝為事件A1,則      2分
設甲以4∶3獲勝為事件A2,則   5分
P(A)=.         6分
(2)隨機變量可能的取值為4,5,6,7,
=.
.
.
.
X的概率分布為:
X
4
5
6
7
P
?
?
?
?
       12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

長沙市某中學在每年的11月份都會舉行“社團文化節(jié)”,開幕式當天組織舉行大型的文藝表演,同時邀請36名不同社團的社長進行才藝展示.其中有的社長是高中學生,的社長是初中學生,高中社長中有是高一學生,初中社長中有是初二學生.
(1)若校園電視臺記者隨機采訪3位社長,求恰有1人是高一學生且至少有1人是初中學生的概率;
(2)若校園電視臺記者隨機采訪3位初中學生社長,設初二學生人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在兩個不同的口袋中,各裝有大小、形狀完全相同的1個紅球、2個黃球.現(xiàn)分別從每一個口袋中各任取2個球,設隨機變量為取得紅球的個數(shù).
(Ⅰ)求的分布列;
(Ⅱ)求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在(1+x)+(1+x)2+(1+x)3+(1+x)4的展開式中,x2項的系數(shù)是______(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙兩支排球隊進行比賽,約定先勝3局者獲得比賽的勝利,比賽隨即結(jié)束,除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是,假設各局比賽結(jié)果相互獨立.
(1)分別求甲隊以3∶0,3∶1,3∶2勝利的概率;
(2)若比賽結(jié)果為3∶0或3∶1,則勝利方得3分,對方得0分;若比賽結(jié)果為3∶2,則勝利方得2分、對方得1分.求乙隊得分X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

袋內(nèi)有5個白球,6個紅球,從中摸出兩球,記X=則X的分布列為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在某社區(qū)舉辦的《有獎知識問答比賽》中,甲、乙、丙三人同時回答某一道題,已知甲回答對這道題的概率是,甲、丙二人都回答錯的概率是,乙、丙二人都回答對的概率是
(Ⅰ)求乙、丙二人各自回答對這道題的概率;
(Ⅱ)設乙、丙二人中回答對該題的人數(shù)為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設隨機變量X的概率分布為
X
1
2
3
4
P

m


則P(|X-3|=1)=     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若隨機變量X的概率分布密度函數(shù)是φμ,σ(x)= (x∈R),則E(2X-1)=(  ).
A.-1B.-2
C.-4D.-5

查看答案和解析>>

同步練習冊答案