等差數(shù)列{an}前n項和為Sn,已知(a2-2)3+2013(a2-2)=sin
2014π
3
,(a2013-2)3+2013(a2013-2)=cos
2015π
6
,則S2014=
 
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:將兩個等式相加,利用立方和公式將得到的等式因式分解,提取公因式得到a2+a2013的值,利用等差數(shù)列的性質(zhì)及數(shù)列的前n項和公式求出n項和.
解答: 解:(a2-2)3+2013(a2-2)=sin
2014π
3
=
3
2
,①
(a2013-2)3+2013(a2013-2)=cos
2015π
6
=-
3
2
,②
①+②得,
(a2-2)3+2013(a2-2)+(a2013-2)3+2013(a2013-2)=0,
即(a2-2+a2013-2)[(a2-2)2-(a2-2)((a2013-2)+(a2013-2)2]+2013(a2-2+a2013-2)=0,
∴a2-2+a2013-2=0,
即a2+a2013=4,
∴S2014=
(a1+a2014)×2014
2
=1007×(a2+a2013)=4028,
故答案為:4028.
點評:本題主要考查等差數(shù)列的前n項和,根據(jù)條件求出a2+a2013=4是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)a>0,且2a,1,a2+3按某種順序排列成等差數(shù)列.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若等差數(shù)列{an}的首項和公差都為a,等比數(shù)列{bn}的首項和公比都為a,數(shù)列{an}和{bn}的前n項和分別為Sn,Tn,且
Tn+2
2n
>Sn-238,求滿足條件的自然數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知如圖所示是函數(shù)y=Asin(ωx+φ)的部分圖象.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)求不等式y(tǒng)≥2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出S的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將長、寬分別為6和8的長方形ABCD沿對角線AC折起,得到四面體A-BCD,則四面體A-BCD的外接球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-4x+alnx在區(qū)間[1,4]上是單調(diào)函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程f(x)=mx2+2(m+1)x+m+3=0至少有一個負(fù)根,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C是球O的球面上三點,AB=2,BC=4,且∠ABC=60°,球心到平面ABC的距離為
3
,則球O的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機變量X服從正態(tài)分布,X的取值落在區(qū)間(-3,-1)內(nèi)的概率和落在區(qū)間(3,5)內(nèi)的概率是相等的,那么隨機變量X的數(shù)學(xué)期望為( 。
A、-2B、0C、1D、2

查看答案和解析>>

同步練習(xí)冊答案