((本小題滿分14分)
已知圓的圓心為,半徑為,圓與橢圓: 有一個(gè)公共點(diǎn)(3,1),分別是橢圓的左、右焦點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線與圓能否相切,若能,求出橢圓和直線的方程;若不能,請(qǐng)說明理由.
解:(1)由已知可設(shè)C的方程為 
將點(diǎn)A的坐標(biāo)代入圓C的方程,得 
,解得
  ∴      
∴圓C的方程為 ……………………….6分
(2)直線能與圓C相切
依題意設(shè)直線的方程為,即
若直線與圓C相切,則
,解得
當(dāng)時(shí),直線x軸的交點(diǎn)橫坐標(biāo)為,不合題意,舍去
當(dāng)時(shí),直線x軸的交點(diǎn)橫坐標(biāo)為,

∴由橢圓的定義得:

,即, ∴         
直線能與圓C切,直的方程為,橢圓E的方程為 ……….14分        
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
設(shè)分別是橢圓的左、右焦點(diǎn).
(Ⅰ)若是該橢圓上的一個(gè)動(dòng)點(diǎn),求·的最大值和最小值;
(Ⅱ)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且∠為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
已知橢圓的一個(gè)頂點(diǎn)為(-2,0),焦點(diǎn)在x軸上,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)斜率為1的直線與橢圓交于A、B兩點(diǎn),O為原點(diǎn),當(dāng)△AOB的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
給定橢圓>0,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為。
(1)求橢圓的方程和其“準(zhǔn)圓”方程;
(2)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線,使得與橢圓都只有一個(gè)交點(diǎn)。求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的左右焦點(diǎn)分別為,離心率為,Q是橢圓外動(dòng)點(diǎn),且等于橢圓長(zhǎng)軸的長(zhǎng),點(diǎn)P是線段與橢圓的交點(diǎn),點(diǎn)T是線段上異于的一點(diǎn),且
(1)求橢圓的方程;
(2)設(shè)直線經(jīng)過與橢圓交于M,N兩點(diǎn),斜率為k,若為鈍角,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知橢圓的離心率為,短軸的長(zhǎng)為2.
(1)求橢圓的標(biāo)準(zhǔn)方程
(2)若經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),滿足,求的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


本小題滿分14分)
已知橢圓的左、右焦點(diǎn)分別為F1、F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點(diǎn)P作此圓的切線,切點(diǎn)為T,且的最小值不小于。
(1)證明:橢圓上的點(diǎn)到F2的最短距離為;
(2)求橢圓的離心率e的取值范圍;
(3)設(shè)橢圓的短半軸長(zhǎng)為1,圓F2軸的右交點(diǎn)為Q,過點(diǎn)Q作斜率為的直線與橢圓相交于A、B兩點(diǎn),若OA⊥OB,求直線被圓F2截得的弦長(zhǎng)S的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,則橢圓的離心率等于(   )
A. B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

.已知、是橢圓的兩個(gè)焦點(diǎn),為橢圓上一點(diǎn),且,則的面積         .

查看答案和解析>>

同步練習(xí)冊(cè)答案