(本小題滿分14分)
已知橢圓的左右焦點分別為,,離心率為,Q是橢圓外動點,且等于橢圓長軸的長,點P是線段與橢圓的交點,點T是線段上異于的一點,且。
(1)求橢圓的方程;
(2)設直線經(jīng)過與橢圓交于M,N兩點,斜率為k,若為鈍角,求k的取值范圍。
解:(1)設方程
,得(3分)
  ∴ 橢圓方程為(6分)
(2)MN的方程為(9分),設
(10分)

∴ 方程有兩個不相等實根
(11分)
,


(12分)
是鈍角  ∴ ,解得(13分)
又M,,N不共線 ∴
綜上得k的取值范圍是(14分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
某公園的大型中心花園的邊界為橢圓,花園內(nèi)種植各種花草. 為增強觀賞性,在橢圓內(nèi)以其
中心為直角頂點且關于中心對稱的兩個直角三角形內(nèi)種植名貴花草(如圖),并以該直角三角
形斜邊開辟觀賞小道(其中的一條為線段). 某園林公司承接了該中心花園的施工建設,
在施工時發(fā)現(xiàn),橢圓邊界上任意一點到橢圓兩焦點的距離和為4(單位:百米),且橢圓上點
到焦點的最近距離為1(單位:百米).
(Ⅰ)以橢圓中心為原點建立如圖的坐標系,求該橢圓的標準方程;
(Ⅱ)請計算觀賞小道的長度(不計小道寬度)的最大值.
 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點,設橢圓的右準線軸的交點為,橢圓的上頂點為,直線被以原點為圓心的圓所截得的弦長為

⑴求橢圓的方程及圓的方程;
⑵若是準線上縱坐標為的點,求證:存在一個異于的點,對于圓上任意一點,有為定值;且當在直線上運動時,點在一個定圓上.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

((本小題滿分14分)
已知圓的圓心為,半徑為,圓與橢圓: 有一個公共點(3,1),分別是橢圓的左、右焦點.
(1)求圓的標準方程;
(2)若點P的坐標為(4,4),試探究斜率為k的直線與圓能否相切,若能,求出橢圓和直線的方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,已知橢圓:的離心率為,左焦點為,過點且斜率為的直線交橢圓于兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)在軸上,是否存在定點,使恒為定值?若存在,求出點的坐標和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若方程表示焦點在x軸上的橢圓,則滿足的條件是(   )
A.B.C.D.,且

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知的頂點B、C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC 邊上,則的周長是.           
A.             B. 6            C.             D. 12   

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
橢圓E:與直線相交于A、B兩點,且OA丄OB(O為坐標原點).
(I)求橢圓E與圓的交點坐標:
(II)當時,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

方程的曲線是焦點在上的橢圓 ,求的取值范圍

查看答案和解析>>

同步練習冊答案