【題目】如圖,在直四棱柱中,底面是梯形, .

(Ⅰ)求證: ;

(Ⅱ)若,點為線段的中點.請在線段上找一點,使平面,并說明理由.

【答案】(I)見解析(II) 線段的中點即為所求的點

【解析】試題分析:(1)證明線線垂直,可先證明線面垂直平面平面,;(2)線段的中點即為所求的點,根據(jù)平行四邊形,得到線線平行,進而得到線面平行。

解析:

(I)在直四棱柱中,

平面平面

,

又∵,

平面.

平面,.

(II)線段的中點即為所求的點 [或:過(或者)平行線交于點].

理由如下:取線段的中點,連結(jié).

, ,

又∵, .

又∵在梯形中, ,

∴四邊形是平行四邊形.

,

又∵,

∵延長必過,四點共面,

不在平面內(nèi),即平面,

又∵平面

平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中, , , , , 分別為的中點.

(1)求證: 平面;

(2)求證: 平面

(3)若二面角的大小為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】田忌和齊王賽馬是歷史上有名的故事,設(shè)齊王的三匹馬分別為,田忌的三匹馬分別為 .三匹馬各比賽一次,勝兩場者為獲勝.若這六匹馬比賽的優(yōu)劣程度可以用以下不等式表示: .

(1)如果雙方均不知道對方馬的出場順序,求田忌獲勝的概率;

(2)為了得到更大的獲勝概率,田忌預(yù)先派出探子到齊王處打探實情,得知齊王第一場必出上等馬,那么,田忌應(yīng)怎樣安排出馬的順序,才能使自己獲勝的概率最大?最大概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正三棱柱 的中點.

求證:(1)平面;

(2)平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AB∥CD,且AB=2AD,設(shè)∠DAB=θ,θ∈(0, ),以A,B為焦點且過點D的雙曲線的離心率為e1 , 以C,D為焦點且過點A的橢圓的離心率為e2 , 則( )

A.隨著角度θ的增大,e1增大,e1e2為定值
B.隨著角度θ的增大,e1減小,e1e2為定值
C.隨著角度θ的增大,e1增大,e1e2也增大
D.隨著角度θ的增大,e1減小,e1e2也減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=2,AA1=2 ,D是AA1的中點,BD與AB1交于點O,且CO⊥平面ABB1A1

(1)證明:CD⊥AB1
(2)若OC=OA,求直線CD與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABBC,AB=BC=a,a[1,3]A是以A為圓心、半徑為2的圓B是以B為圓心、半徑為1的圓,設(shè)點E、F分別為圓A、B上的動點, (且同向),設(shè)BAE=θ(θ[0,π])

(I)a= ,且θ= 時,求的值;

()a,θ表示出,并給出一組a,θ的值,使得最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知E,F(xiàn)分別是棱長為1的正方體ABCD﹣A1B1C1D1的棱BC,CC1的中點,則截面AEFD1與底面ABCD所成二面角的正弦值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,只需將函數(shù)y=sin2x的圖象上所有的點( )
A.向左平移 個單位
B.向左平移 個單位
C.向右平移 個單位
D.向右平移 個單位

查看答案和解析>>

同步練習(xí)冊答案