函數(shù)f(x)=x2-2x-3的零點(diǎn)是( 。
A、x=-1和x=3
B、x=-3和x=1
C、(-1,0)和(3,0)
D、(-3,0)和(1,0)
考點(diǎn):函數(shù)的零點(diǎn)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由題意,函數(shù)f(x)=x2-2x-3的零點(diǎn)即方程x2-2x-3=0的根,解方程即可.
解答: 解:函數(shù)f(x)=x2-2x-3的零點(diǎn)即
方程x2-2x-3=0的根,
解方程可得,x=3或x=-1;
故選A.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間[3a-5,2a]上的奇函數(shù),則實(shí)數(shù)a的值為( 。
A、1
B、
1
3
C、0
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2mx(m>0)的焦點(diǎn)F傾斜角為
π
4
的直線交拋物線于A、B兩點(diǎn),弦長(zhǎng)為|AB|.命題p:|AB|≥4,命題q:方程
x2
m-2
+
y2
m+1
=1(m∈R)表示雙曲線,如p∧q為假,p∨q為真,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{cn}的首項(xiàng)c1=1且前n項(xiàng)和為Sn.已知向量
an
=(cn,2),
bn
=(cn+1,1)滿足
an
bn
,則
lim
n→∞
Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,Sn為其前n項(xiàng)和,若
S4
S6
=-
2
3
,則
S5
S8
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“雙曲線C的漸近線方程為y=±
4
3
x”是“雙曲線C的方程為
x2
9
-
y2
16
=1”的(  )
A、充要條件
B、充分不必要條件
C、必要不充分條件
D、不充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,△PAB是邊長(zhǎng)為2的正三角形,底面ABCD為菱形,O為AB的中點(diǎn),且PO⊥平面ABCD,OD與AC交于點(diǎn)F,E為PD上一點(diǎn),且PD=3PE.
(1)求證:平面ACE⊥平面ABCD;
(2)若∠ABC=60°,求異面直線AB與CE所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-11,a4+a6=-6,S5等于( 。
A、-35B、-30
C、30D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)復(fù)數(shù)z1=1-i,z2=2+i,其中i為虛數(shù)單位,則z1•z2的虛部為(  )
A、-1B、1C、-iD、i

查看答案和解析>>

同步練習(xí)冊(cè)答案