分析 設(shè)球心到棱錐底面的距離為x,則棱錐的高為x+3,利用勾股定理求出底面邊長(zhǎng),代入體積公式,根據(jù)不等式的性質(zhì)求出體積的最大值.
解答 解:設(shè)球心O到三棱錐底面ABC的距離為x,則0≤x<3,
設(shè)底面中心為O′,則O′A=$\sqrt{O{A}^{2}-OO{′}^{2}}$=$\sqrt{9-{x}^{2}}$,
∴底面邊長(zhǎng)AB=$\sqrt{3}$O′A=$\sqrt{27-3{x}^{2}}$,棱錐的高PO′=x+3,
∴VP-ABC=$\frac{1}{3}{S}_{△ABC}•PO′$=$\frac{1}{3}×\frac{\sqrt{3}}{4}(27-3{x}^{2})(x+3)$=$\frac{\sqrt{3}}{8}$(3+x)(6-2x)(x+3)≤$\frac{\sqrt{3}}{8}$($\frac{3+x+6-2x+x+3}{3}$)3=8$\sqrt{3}$.
當(dāng)且僅當(dāng)x+3=6-2x即x=1時(shí)取得等號(hào).
故答案為8$\sqrt{3}$.
點(diǎn)評(píng) 本題考查了球與內(nèi)接幾何體的關(guān)系,空間想象能力,體積計(jì)算及不等式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
X1 | 5 | 6 | 7 | 8 |
P | 0.4 | a | b | 0.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 3-$\sqrt{3}$ | C. | 2 | D. | 3+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com