【題目】2021年起,新高考科目設(shè)置采用“”模式,普通高中學生從高一升高二時將面臨著選擇物理還是歷史的問題,某校抽取了部分男、女學生調(diào)查選科意向,制作出如右圖等高條形圖,現(xiàn)給出下列結(jié)論:
①樣本中的女生更傾向于選歷史;
②樣本中的男生更傾向于選物理;
③樣本中的男生和女生數(shù)量一樣多;
④樣本中意向物理的學生數(shù)量多于意向歷史的學生數(shù)量.
根據(jù)兩幅條形圖的信息,可以判斷上述結(jié)論正確的有( )
A.1個B.2個C.3個D.4個
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖像向左平移個單位后得到函數(shù)的圖像,且函數(shù)滿足,則下列命題中正確的是()
A. 函數(shù)圖像的兩條相鄰對稱軸之間的距離為
B. 函數(shù)圖像關(guān)于點對稱
C. 函數(shù)圖像關(guān)于直線對稱
D. 函數(shù)在區(qū)間內(nèi)為單調(diào)遞減函數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線過焦點且平行于軸的弦長為.點,直線與交于兩點,
(1)求拋物線的方程;
(2)若不平行于軸,且為坐標原點),證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解手機品牌的選擇是否和年齡的大小有關(guān),隨機抽取部分華為手機使用者和蘋果機使用者進行統(tǒng)計,統(tǒng)計結(jié)果如下表:
年齡 手機品牌 | 華為 | 蘋果 | 合計 |
30歲以上 | 40 | 20 | 60 |
30歲以下(含30歲) | 15 | 25 | 40 |
合計 | 55 | 45 | 100 |
附:
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
根據(jù)表格計算得的觀測值,據(jù)此判斷下列結(jié)論正確的是( )
A.沒有任何把握認為“手機品牌的選擇與年齡大小有關(guān)”
B.可以在犯錯誤的概率不超過0.001的前提下認為“手機品牌的選擇與年齡大小有關(guān)”
C.可以在犯錯誤的概率不超過0.01的前提下認為“手機品牌的選擇與年齡大小有關(guān)”
D.可以在犯錯誤的概率不超過0.01“手機品牌的選擇與年齡大小無關(guān)”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當時,若函數(shù)的導函數(shù)的圖象與軸交于, 兩點,其橫坐標分別為, ,線段的中點的橫坐標為,且, 恰為函數(shù)的零點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)曲線,點,為該曲線上不同的兩點.求證:當時,直線的斜率大于-1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在四棱錐中,底面是邊長為的正方形,是正三角形,,分別是的中點。
(1)求證:;
(2)求平面與平面所成銳二面角的大;
(3)線段上是否存在一個動點,使得直線與平面所成角為,若存在,求線段的長度,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:()的左右焦點分別為,,點為短軸的一個端點,.
(1)求橢圓C的方程;
(2)如圖,過右焦點,且斜率為k()的直線l與橢圓C相交于D,E兩點,A為橢圓的右頂點,直線,分別交直線于點M,N,線段的中點為P,記直線的斜率為.試問是否為定值?若為定值,求出該定值;若不為定值,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com