【題目】已知函數(shù),.

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)曲線,點(diǎn)為該曲線上不同的兩點(diǎn).求證:當(dāng)時(shí),直線的斜率大于-1.

【答案】(Ⅰ)當(dāng)時(shí),的減區(qū)間是,無增區(qū)間;當(dāng)時(shí),的減區(qū)間是,增區(qū)間是.(Ⅱ)證明見解析.

【解析】

)由,求導(dǎo)得,

再分兩種情況分類討論求解.

)由,得,設(shè),要證直線的斜率大于-1.,只需證,只需證.即證上是增函數(shù)即可.

)因?yàn)?/span>,

所以

當(dāng)時(shí),,所以上是減函數(shù),

當(dāng)時(shí),令,

當(dāng)時(shí),,上是增函數(shù),

當(dāng)時(shí),,上是減函數(shù),

綜上:當(dāng)時(shí),的減區(qū)間是.

當(dāng)時(shí),的減區(qū)間是,增區(qū)間是.

)因?yàn)?/span>

所以,設(shè)

要證直線的斜率大于-1.,

只需證

只需證,

只需證.

即證上是增函數(shù),

要證上是增函數(shù),

只需證當(dāng)時(shí),上恒成立,

只需證當(dāng)時(shí),上恒成立,

所以當(dāng)時(shí),上恒成立

以上各步可逆

所以直線的斜率大于-1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中:底面ABCD,底面ABCD為梯形,,,且,BC=1,M為棱PD上的點(diǎn)。

(Ⅰ)若,求證:平面PAB;

(Ⅱ)求直線BD與平面PAD所成角的大小;

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙、丙、丁、戊五名志愿者中選派三人分別從事翻譯、導(dǎo)游、禮儀三項(xiàng)不同工作,若其中乙和丙只能從事前兩項(xiàng)工作,其余三人均能從事這三項(xiàng)工作,則不同的選派方案共有( )

A.36B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2021年起,新高考科目設(shè)置采用模式,普通高中學(xué)生從高一升高二時(shí)將面臨著選擇物理還是歷史的問題,某校抽取了部分男、女學(xué)生調(diào)查選科意向,制作出如右圖等高條形圖,現(xiàn)給出下列結(jié)論:

①樣本中的女生更傾向于選歷史;

②樣本中的男生更傾向于選物理;

③樣本中的男生和女生數(shù)量一樣多;

④樣本中意向物理的學(xué)生數(shù)量多于意向歷史的學(xué)生數(shù)量.

根據(jù)兩幅條形圖的信息,可以判斷上述結(jié)論正確的有(

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某地區(qū)隨機(jī)抽測(cè)120名成年女子的血清總蛋白含量(單位:),由測(cè)量結(jié)果得如圖頻數(shù)分布表:

1)①仔細(xì)觀察表中數(shù)據(jù),算出該樣本平均數(shù)______;

②由表格可以認(rèn)為,該地區(qū)成年女子的血清總蛋白含量Z服從正態(tài)分布.其中近似為樣本平均數(shù),近似為樣本標(biāo)準(zhǔn)差s.經(jīng)計(jì)算,該樣本標(biāo)準(zhǔn)差.

醫(yī)學(xué)上,Z過高或過低都為異常,Z的正常值范圍通常取關(guān)于對(duì)稱的區(qū)間,且Z位于該區(qū)間的概率為,試用該樣本估計(jì)該地區(qū)血清總蛋白正常值范圍.

120名成年女人的血清總蛋白含量的頻數(shù)分布表

分組

頻數(shù)f

區(qū)間中點(diǎn)值x

2

65

130

8

67

536

12

69

828

15

71

1065

25

73

1825

24

75

1800

16

77

1232

10

79

790

7

81

567

1

83

83

合計(jì)

120

8856

2)結(jié)合(1)中的正常值范圍,若該地區(qū)有5名成年女子檢測(cè)血清總蛋白含量,測(cè)得數(shù)據(jù)分別為83.2,8073,59.577,從中隨機(jī)抽取2名女子,設(shè)血清總蛋白含量不在正常值范圍的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

附:若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙、丙三個(gè)車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,60件,30件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個(gè)容量為n的樣本進(jìn)行調(diào)查,其中從乙車間的產(chǎn)品中抽取了2件。

(Ⅰ)應(yīng)從甲、丙兩個(gè)車間的產(chǎn)品中分別抽取多少件,樣本容量n為多少?

(Ⅱ)設(shè)抽出的n件產(chǎn)品分別用,…,表示,現(xiàn)從中隨機(jī)抽取2件產(chǎn)品。

(i)試用所給字母列舉出所有可能的抽取結(jié)果;

(ii)設(shè)M為事件“抽取的2件產(chǎn)品來自不同車間”,求事件M發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行下面的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,BC的對(duì)邊分別為a,bc,且

1)求角A的值;

2)若角B,BC邊上的中線AM,求邊b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1)已知E,FG,H為空間四邊形ABCD的邊ABBC,CDDA上的點(diǎn),且EHFG.求證:EHBD

2)如圖(2):S是平行四邊形ABCD平面外一點(diǎn),M,N分別是SABD上的點(diǎn),且,求證:MN平面SBC

查看答案和解析>>

同步練習(xí)冊(cè)答案