8.“上醫(yī)醫(yī)國”出自《國語•晉語八》,比喻高賢能治理好國家,把這四個字分別寫在四張卡片上,某幼童把這四張卡片進(jìn)行隨機(jī)排列,則該幼童能將這句話排列正確的概率是( 。
A.$\frac{1}{8}$B.$\frac{1}{10}$C.$\frac{1}{11}$D.$\frac{1}{12}$

分析 先求出基本事件總數(shù)n=${A}_{3}^{3}{A}_{4}^{1}$=12,由此能求出該幼童能將這句話排列正確的概率.

解答 解:把“上醫(yī)醫(yī)國”這四個字分別寫在四張卡片上,
某幼童把這四張卡片進(jìn)行隨機(jī)排列,
基本事件總數(shù)n=${A}_{3}^{3}{A}_{4}^{1}$=12,
∴該幼童能將這句話排列正確的概率p=$\frac{1}{12}$.
故選:D.

點(diǎn)評 本題考查概率的求法,以及化簡整理的運(yùn)算能力,屬于基礎(chǔ)題,解題時要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.拋物線形拱橋,橋頂離水面2米時,水面寬4米,當(dāng)水面下降了1.125米時,水面寬為5m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某教室一天的溫度(單位:℃)隨時間(單位:h)變化近似地滿足函數(shù)關(guān)系:$f(t)=20-2sin({\frac{π}{24}t-\frac{π}{6}})$,t∈[0,24],則該天教室的最大溫差為3℃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四邊形ABCD是邊長為$\sqrt{2}$的正方形,CG⊥平面ABCD,DE∥BF∥CG,$DE=BF=\frac{3}{5}CG$.P為線段EF的中點(diǎn),AP與平面ABCD所成角為60°.在線段CG上取一點(diǎn)H,使得$GH=\frac{3}{5}CG$.
(Ⅰ)求證:PH⊥平面AEF;
(Ⅱ)求多面體ABDEFH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.直線l過點(diǎn)$P(\frac{4}{3},2)$,且與x軸,y軸的正方向分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積為6時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.錐體中,平行于底面的兩個平面把錐體的體積三等分,這時高被分成三段的長自上而下的比為( 。
A.1:$\root{3}{2}$:$\root{3}{3}$B.1:2:3C.1:($\sqrt{2}$-1):($\sqrt{3}$-$\sqrt{2}$)D.1:($\root{3}{2}$-1):($\root{3}{3}$-$\root{3}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=log${\;}_{\frac{1}{e}}}$(x2+$\frac{1}{e}}$)-|${\frac{x}{e}}$|,則使得f(x+1)<f(2x-1)的x的范圍是( 。
A.(0,2)B.(-∞,0)C.(-∞,0)∪(2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知(2x+$\frac{1}{\sqrt{x}}$)n的展開式中的二項(xiàng)式系數(shù)之和為64,則展開式中的常數(shù)項(xiàng)為60(數(shù)字回答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知M(-$\sqrt{3}$b,0),N($\sqrt{3}$b,0)(b>0),P是曲線C上的動點(diǎn),直線PM的斜率與直線PN的斜率的積為-$\frac{1}{3}$.
(1)求曲線C的方程;
(2)直線l:y=x-$\sqrt{2}$b與曲線C相交于A、B,設(shè)O為坐標(biāo)系原點(diǎn),$\overrightarrow{OP}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,證明:λ22是定值.

查看答案和解析>>

同步練習(xí)冊答案