【題目】如圖所示,傾斜角為的直線經(jīng)過拋物線的焦點,且與拋物線交于兩點.

1)求拋物線的焦點的坐標(biāo)及準(zhǔn)線的方程;

2)若為銳角,作線段的垂直平分線軸于點.證明為定值,并求此定值.

【答案】1;2)證明見解析;定值為8

【解析】

1)根據(jù)拋物線標(biāo)準(zhǔn)方程得,從而易得焦點坐標(biāo)和準(zhǔn)線方程;

2)設(shè)點的坐標(biāo)分別為.直線的斜率為,則直線方程為,代入拋物線方程整理后可和,這樣可得中點的坐標(biāo),由直線垂直可得的方程,在此方程中令,計算化簡得定值.

解(1)設(shè)拋物線的標(biāo)準(zhǔn)方程為,則,從而.

因此焦點的坐標(biāo)為(2,0),又準(zhǔn)線方程的一般式為.

從而所求準(zhǔn)線的方程為.

2)設(shè)點的坐標(biāo)分別為.直線的斜率為,則直線方程為.將此式代入,得.

.

記直線的交點為,則,.

故直線的方程為.

,得點的橫坐標(biāo),故

.

從而為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究患肺癌與是否吸煙有關(guān),某機構(gòu)做了一次相關(guān)調(diào)查,制成如下圖的列聯(lián)表,其中數(shù)據(jù)丟失,但可以確定的是不吸煙人數(shù)與吸煙人數(shù)相同,吸煙患肺癌人數(shù)占吸煙總?cè)藬?shù)的;不吸煙的人數(shù)中,患肺癌與不患肺癌的比為.

患肺癌

不患肺癌

合計

吸煙

不吸煙

總計

(1)若吸煙不患肺癌的有4人,現(xiàn)從患肺癌的人中用分層抽樣的方法抽取5人,再從這5人中隨機抽取2人進(jìn)行調(diào)查,求這兩人都是吸煙患肺癌的概率;

(2)若研究得到在犯錯誤概率不超過0.001的前提下,認(rèn)為患肺癌與吸煙有關(guān),則吸煙的人數(shù)至少有多少?

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中是自然對數(shù)的底數(shù)).

(1)證明:①當(dāng)時,;

②當(dāng)時,.

(2)是否存在最大的整數(shù),使得函數(shù)在其定義域上是增函數(shù)?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若,求函數(shù)的極值和單調(diào)區(qū)間;

2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會必須打好的三大攻堅戰(zhàn)之一. 堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村中60戶農(nóng)民種植蘋果、40戶農(nóng)民種植梨、20戶農(nóng)民種植草莓(每戶僅扶持種植一種水果),為了更好地了解三種水果的種植與銷售情況,現(xiàn)從該村隨機選6戶農(nóng)民作為重點考察對象;

(1)用分層抽樣的方法,應(yīng)選取種植蘋果多少戶?

(2)在上述抽取的6戶考察對象中隨機選2戶,求這2戶種植水果恰好相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線上縱坐標(biāo)為的點到焦點的距離為2.

(Ⅰ)求的值;

(Ⅱ)如圖,為拋物線上三點,且線段軸交點的橫坐標(biāo)依次組成公差為1的等差數(shù)列,若的面積是面積的,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為,過點的動直線與雙曲線相交于兩點.軸上是否存在定點,使為常數(shù)?若存在,求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年元旦班級聯(lián)歡晚會上,某班在聯(lián)歡會上設(shè)計了一個摸球表演節(jié)目的游戲,在一個紙盒中裝有1個紅球,1個黃球,1個白球和1個黑球,這些球除顏色外完全相同,A同學(xué)不放回地每次摸出1個球,若摸到黑球則停止摸球,否則就要將紙盒中的球全部摸出才停止.規(guī)定摸到紅球表演兩個節(jié)目,摸到白球或黃球表演一個節(jié)目,摸到黑球不用表演節(jié)目.

(1)求A同學(xué)摸球三次后停止摸球的概率;

(2)記X為A同學(xué)摸球后表演節(jié)目的個數(shù),求隨機變量X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,為自然對數(shù)的底數(shù). 設(shè)的導(dǎo)函數(shù).

(Ⅰ)若時,函數(shù)處的切線經(jīng)過點,求的值;

(Ⅱ)求函數(shù)在區(qū)間上的單調(diào)區(qū)間;

(Ⅲ)若,函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案