精英家教網(wǎng)如圖,已知四面體O-ABC中,E、F分別為AB,OC上的點,且AE=
13
AB,F(xiàn)為中點,若AB=3,BC=1,BO=2,且∠ABC=90°,∠OBA=∠OBC=60°,求異面直線OE與BF所成角的余弦值.
分析:本題可利用向量運算來解答,設空間一組基底
BO
,
BC
,
BA
,利用空間向量基本定理表示出向量
BF
,
OE
,可利用向量的數(shù)量積以及夾角公式解得向量
BF
,
OE
的夾角余弦值cos<
BF
,
OE
,從而得到異面直線的夾角余弦值|cos<
BF
,
OE
>|
解答:解:∵
BF
=
1
2
(
BO
+
BC
),
OE
=
2
3
BA
-
BO
,
|
BF
|2=
1
4
(|
BO
|2+|
BC
|2+2
BO
BC
)=
1
4
(4+1+2|
BO
||
BC
|cos60°)=
7
4
,|
BF
|=
7
2
;|
OE
|2=
4
9
|
BA
|2+|
BO
|2-
4
3
BA
BO
=4+4-4=4,|
OE
|=2

BF
OE
=
1
2
(
2
3
BA
BO
-|
BO
|2+
2
3
BC
BA
-
BC
BO
)=
1
2
(2-4-1)=-
3
2
,
cos<
BF
,
OE
>=
BF
OE
|
BF
||
OE
|
=
-3
2
7
=-
3
7
14
,
故異面直線OE與BF所成的角的余弦值為:
3
7
14
點評:本題考查空間幾何體的概念,異面直線以及異面直線所成角的概念,向量法解答幾何問題的“三步曲”思想的應用,考查了向量的數(shù)量積的運算律,夾角公式,空間向量基本定理的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:名師指點學高中課程 數(shù)學 高二(下) 題型:047

如圖,已知在正四面體ABCD中,O為A在BCD面內(nèi)的射影,M為AO中點,求證MB、MC、MD兩兩垂直.

查看答案和解析>>

科目:高中數(shù)學 來源:四川省南充高中2008-2009學年高二下學期第四次月考數(shù)學文 題型:044

如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.

(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;

(2)如圖,若四面體P-ABC中,AP=AB=1,AE⊥PB,垂足為E,AF⊥PC,垂足為F.設∠EAF=,為△AEF面積的函數(shù),求取最大值時二面角A-PB-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四面體OABC中,EF分別為AB、OC上的點,且AEAB,F為中點,若AB=3,BC=1,BO=2,且∠ABC=90°,∠OBA=∠OBC=60°,求異面直線OEBF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四面體O-ABC中,E、F分別為AB,OC上的點,且AE=數(shù)學公式AB,F(xiàn)為中點,若AB=3,BC=1,BO=2,且∠ABC=90°,∠OBA=∠OBC=60°,求異面直線OE與BF所成角的余弦值.

查看答案和解析>>

同步練習冊答案