已知函數(shù)f(x)=x2+ax-2b.若a,b都是區(qū)間[0,4]內(nèi)的數(shù),則使f(1)>0成立的概率是
A.B.C.D.
C
試驗(yàn)發(fā)生區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313499451129.png" style="vertical-align:middle;" />,事件發(fā)生的區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232313499601502.png" style="vertical-align:middle;" />,
試驗(yàn)區(qū)域面積為16,事件發(fā)生的區(qū)域面積為所以事件發(fā)生概率
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法:
①必然事件的概率為1;
②如果某種彩票的中獎(jiǎng)概率為
1
10
,那么買(mǎi)1000張這種彩票一定能中獎(jiǎng);
③某事件的概率為1.1;
④互斥事件一定是對(duì)立事件;
其中正確的說(shuō)法是( 。
A.①②③④B.①C.③④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某人在打靶中,連續(xù)射擊2次,事件“至少有一次中靶”的互斥事件是  (     )
A.至多有一次中靶B.兩次都中靶C.兩次都不中靶D.只有一次中靶

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

4張卡片上分別寫(xiě)有數(shù)字0,1,2,3,從這4張卡片中一次隨機(jī)抽取不同的2張,則取出的兩張卡片上的數(shù)字之差的絕對(duì)值等于2的概率為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從含有兩件正品和一件次品的3件產(chǎn)品中每次任取1件,每次取出后放回,連續(xù)取兩次,則取出的兩件產(chǎn)品中恰有一件是次品的概率為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

從某批產(chǎn)品中,有放回地抽取產(chǎn)品二次,每次隨機(jī)抽取1件,假設(shè)事件:“取出的2件產(chǎn)品中至多有1件是二等品”的概率
(Ⅰ) 求從該批產(chǎn)品中任取1件是二等品的概率
(Ⅱ) 若該批產(chǎn)品共100件,從中依次抽取2件,求事件:“取出的2件產(chǎn)品中至少有一件二等品”的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論正確的是                                       (    )
A.A與C互斥B.B與C互斥但不對(duì)立
C.任何兩個(gè)均互斥 D.B與C互斥且對(duì)立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法正確的是                                       (    )
A.任一事件的概率總在(0.1)內(nèi)B.不可能事件的概率不一定為0
C.必然事件的概率一定為1D.以上均不對(duì)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有外形相同的球分裝三個(gè)盒子,每盒10個(gè),其中,第一個(gè)盒子中7個(gè)球標(biāo)有字母A,3個(gè)球標(biāo)有字母B;第二個(gè)盒子中有紅球和白球各5個(gè);第三個(gè)盒子中則有紅球8個(gè),白球2個(gè).試驗(yàn)按如下規(guī)則進(jìn)行:先在第一個(gè)盒子中任取一球,若取得標(biāo)有字母A的球,則在第二個(gè)盒子中任取一球;若第一次取得標(biāo)有字母B的球,則在第三個(gè)盒子中任取一球.若第二次取出的是紅球,則稱(chēng)試驗(yàn)成功.求試驗(yàn)成功的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案