已知橢圓(a>b>0)的離心率為,且短軸長為2.
(1)求橢圓的方程;
(2)若與兩坐標軸都不垂直的直線l與橢圓交于A,B兩點,O為坐標原點,且,求直線l的方程.
【答案】分析:(1)短軸的長求得b,進而根據(jù)離心率求得a和c的關(guān)系,則a和b的關(guān)系可求得,最后根據(jù)b求得a,則橢圓的方程可得.
(2)設(shè)出直線l的方程,及A,B的坐標,把直線與橢圓方程聯(lián)立消去y,根據(jù)韋達定理表示出x1+x2和x1x2,進而根據(jù)求得m和k的關(guān)系式,同時根據(jù)三角形的面積求得k和m的另一關(guān)系式,最后聯(lián)立求得m和k,則l的方程可得.
解答:解:(1)短軸長2b=2,b=1,
又a2=b2+c2,所以,所以橢圓的方程為
(2)設(shè)直線l的方程為y=kx+m(k≠0),A(x1,y1),B(x2,y2,
消去y得,(1+2k2)x2+4mkx+2m2-2=0,
即9m2=10k2+8
即9m2(1+2k2-m2)=(1+2k22
,
解得k2=1,m2=2,所以
點評:本題主要考查了橢圓的標準方程.考查了學生綜合分析問題的能力和基本運算的能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(-c,0)和(c,0),若c是a、m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

(本題滿分14分)

如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2,·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(天津卷解析版) 題型:解答題

已知橢圓(a>b>0),點在橢圓上。

(I)求橢圓的離心率。

(II)設(shè)A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點定位】本小題主要考查橢圓的標準方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間距離公式等基礎(chǔ)知識. 考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學思想方法.考查運算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省天門市高三天5月模擬文科數(shù)學試題 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點M(0,1),與橢圓C交于不同兩點A、B.

   (1)求橢圓C的標準方程;

   (2)當橢圓C的右焦點F在以AB為直徑的圓內(nèi)時,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河北省邯鄲市高二上學期期末考試數(shù)學理卷 題型:解答題

(本小題滿分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點.

(1)求橢圓的方程;

(2)若直線與橢圓交于、兩點,,求k的值.

 

查看答案和解析>>

同步練習冊答案