2.函數(shù)$f(x)=ln(2x+\sqrt{4{x^2}+1})+a$,若f(0)=1,則$f(lg2)+f(lg\frac{1}{2})$=2.

分析 由f(0)=ln1+a=a=1,得$f(lg2)+f(lg\frac{1}{2})$=ln(2lg2+$\sqrt{4l{g}^{2}2+1}$)(2lg$\frac{1}{2}+\sqrt{4l{g}^{2}\frac{1}{2}+1}$)+2=lg1+2,由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=ln(2x+\sqrt{4{x^2}+1})+a$,f(0)=1,
∴f(0)=ln1+a=a=1,
$f(lg2)+f(lg\frac{1}{2})$=ln(2lg2+$\sqrt{4l{g}^{2}2+1}$+1)+ln(2lg$\frac{1}{2}$+$\sqrt{4l{g}^{2}\frac{1}{2}+1}+1$)
=ln(2lg2+$\sqrt{4l{g}^{2}2+1}$)(2lg$\frac{1}{2}+\sqrt{4l{g}^{2}\frac{1}{2}+1}$)+2
=ln1+2
=2.
故答案為:2.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.京劇是我國(guó)的國(guó)粹,是“國(guó)家級(jí)非物質(zhì)文化遺產(chǎn)”,某機(jī)構(gòu)在網(wǎng)絡(luò)上調(diào)查發(fā)現(xiàn)各地京劇票友的年齡ξ服從正態(tài)分布N(μ,σ2),同時(shí)隨機(jī)抽取100位參與某電視臺(tái)《我愛(ài)京劇》節(jié)目的票友的年齡作為樣本進(jìn)行分析研究(全部票友的年齡都在[30,80]內(nèi)),樣本數(shù)據(jù)分別區(qū)間為[30,40),[40,50),[50,60),[60,70),[70,80],由此得到如圖所示的頻率分布直方圖.
(Ⅰ)  若P(ξ<38)=P(ξ>68),求a,b的值;
(Ⅱ)現(xiàn)從樣本年齡在[70,80]的票友中組織了一次有關(guān)京劇知識(shí)的問(wèn)答,每人回答一個(gè)問(wèn)題,答對(duì)贏得一臺(tái)老年戲曲演唱機(jī),答錯(cuò)沒(méi)有獎(jiǎng)品,假設(shè)每人答對(duì)的概率均為$\frac{2}{3}$,且每個(gè)人回答正確與否相互之間沒(méi)有影響,用η表示票友們贏得老年戲曲演唱機(jī)的臺(tái)數(shù),求η的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若xlog32=1,則2x+2-x=$\frac{10}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知x為實(shí)數(shù),則“$\frac{1}{x}<1$”是“x>1”的( 。
A.充分非必要條件B.充要條件
C.必要非充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(log2x)的定義域?yàn)閇1,4],則f(x)的定義域?yàn)椋ā 。?table class="qanwser">A.[2,16]B.[1,2]C.[0,8]D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知p:x2+mx+1=0有兩個(gè)不相等的負(fù)實(shí)根,q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根,若p∧q為假,p∨q為真求:m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若存在實(shí)數(shù)m,n使函數(shù)f(x)=$\sqrt{x+3}$+k的定義域?yàn)閇m,n],值域?yàn)閇-n,-m],則實(shí)數(shù)k的取值范圍是[2,$\frac{9}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.有下列命題:
①已知$\overrightarrow{a}$,$\overrightarrow$是平面內(nèi)兩個(gè)非零向量,則平面內(nèi)任一向量$\overrightarrow{c}$都可表示為λ$\overrightarrow{a}$+μ$\overrightarrow$,其中λ,μ∈R;
②對(duì)任意平面四邊形ABCD,點(diǎn)E、F分別為AB、CD的中點(diǎn),則$2\overrightarrow{EF}=\overrightarrow{AD}+\overrightarrow{BC}$;
③直線(xiàn)x-y-2=0的一個(gè)方向向量為(1,-1);
④在△ABC中,AB=2,AC=3,$\overrightarrow{AB}•\overrightarrow{BC}=1$則BC=$\sqrt{3}$;
其中正確的是②④(寫(xiě)出所有正確命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.定義域?yàn)镽的函數(shù)f(x)滿(mǎn)足f(x+2)=2f(x),當(dāng)x∈[-2,0]時(shí),f(x)=x2+2x,若x∈[2,4]時(shí),$f(x)≥2log_2^{(t+1)}$恒成立,則實(shí)數(shù)t的取值范圍是(-1,-$\frac{3}{4}$].

查看答案和解析>>

同步練習(xí)冊(cè)答案