8.已知a,b,c滿足c<b<a,且ac<0,下列選項(xiàng)中不一定成立的是( 。
A.ab>acB.c(b-a)>0C.ac(a-c)<0D.cb2>ab2

分析 由條件c<b<a且ac<0可知a>0,c<0,b任意,然后根據(jù)不等式的性質(zhì)分別進(jìn)行判斷.

解答 解:∵c<b<a,且ac<0,
∴a>0,c<0,
∴ab>ac,故A一定成立,
∴b-a<0,
∴c(b-a)>0,故B一定成立,
∵ac<0,a-c>0,
∴ac(a-c)<0,故C一定成立,
對(duì)于D:當(dāng)b=0時(shí),不成立,
故選:D.

點(diǎn)評(píng) 本題主要考查不等式性質(zhì)的應(yīng)用,利用條件確定a>0,c<0是解決本題的關(guān)鍵.比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.5名大學(xué)生被分配到4個(gè)地區(qū)支教,每個(gè)地區(qū)至少分配1人,其中甲乙兩名同學(xué)因?qū)I(yè)相同,不能分配在同一地區(qū),則不同的分配方法的種數(shù)為( 。
A.120B.144C.216D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.在四棱錐P-ABCD中,底面ABCD為菱形,∠DAB=60°,PC⊥平面ABCD,且AB=2,PC=$\sqrt{6}$,F(xiàn)是PA的中點(diǎn).
(Ⅰ)求證:CF⊥平面PDB;
(Ⅱ)求平面ADP與平面BCP所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)g(x)=$\frac{\sqrt{x+2}}{x}$,h(x)=x2•$\sqrt{x+2}$,f(x)是g (x)與h(x)的積,求:f(x)解析式,并畫出其圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在等差數(shù)列{an}中,a2=4,a3+a8=15.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2${\;}^{{a}_{n}-2}$+2n+1,求b1+b2+b3+…+b10的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.一直線與直二面角的兩個(gè)面所成的角分別為α,β,則(  )
A.α+β<90°B.α+β≤90°C.α+β>90°D.α+β≥90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,二面角α-l-β的大小是60°,線段AB?α.B∈l,AB與l所成的角為30°.求直線AB與平面β所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知無(wú)窮等差數(shù)列{an}中,首項(xiàng)a1=3,公差d=-5,依次取出序號(hào)能被4除余3的項(xiàng)組成數(shù)列{bn}
(1)求b1和b2;
(2)求{bn}的通項(xiàng)公式;
(3){bn}中的第503項(xiàng)是{an}中的第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在Rt△ABC中,∠A=90°,AB=3,AC=4,記$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$.
(1)若BD=1,試用$\overrightarrow{a}$,$\overrightarrow$表示$\overrightarrow{AD}$;
(2)若D是線段BC上任意一點(diǎn),求$\overrightarrow{AD}$•$\overrightarrow{BC}$≤0的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案