A. | 3 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 由|PQ|=1,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,根據(jù)切線長定理,可得|PF1|-|PF2|=2,結(jié)合|F1F2|=4,即可得出結(jié)論.
解答 解:∵雙曲線的焦距為4,
∴|F1F2|=4,∴c=2
∵|PQ|=1,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,
∴根據(jù)切線長定理可得AM=AN,F(xiàn)1M=F1Q,PN=PQ,
∵|AF1|=|AF2|,
∴AM+F1M=AN+PN+NF2,
∴F1M=PN+NF2=PQ+PF2
∴|PF1|-|PF2|=F1Q+PQ-PF2=F1M+PQ-PF2=PQ+PF2+PQ-PF2=2PQ=2,
即2a=2,則a=1,
∵a=1,c=2
∴雙曲線的離心率是e=$\frac{c}{a}$=2.
故選:D.
點(diǎn)評 本題主要考查雙曲線的離心率,考查三角形內(nèi)切圓的性質(zhì),考查切線長定理,考查學(xué)生的計算能力,利用雙曲線的定義進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n2-6n+4 | B. | n2-3n+2 | C. | 2n2-2n | D. | n2-n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com