5.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=$\frac{1}{2}$,過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(1)求橢圓E的方程;
(2)若直線AB的斜率為$\sqrt{3}$,求△ABF2的面積.

分析 (1)利用橢圓的離心率以及△ABF2的周長(zhǎng)為8,求出a,c,b,即可得到橢圓的方程,
(2)求出直線方程與橢圓方程聯(lián)立,求出A,B坐標(biāo),然后求解三角形的面積即可.

解答 解:(1)由題意知,4a=8,所以a=2,
又e=$\frac{1}{2}$,可得$\frac{c}{a}$=$\frac{1}{2}$,c=1.∴b2=22-1=3.
從而橢圓的方程為:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{3}=1$.
(2)設(shè)直線方程為:y=$\sqrt{3}$(x+1)
由$\left\{\begin{array}{l}{y=\sqrt{3}(x+1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$得:5x2+8x=0.
解得:x1=0,x2=$-\frac{8}{5}$,
所以y1=$\sqrt{3}$,y2=$-\frac{3\sqrt{3}}{5}$,
則S=c|y1-y2|=$\frac{8\sqrt{3}}{5}$.

點(diǎn)評(píng) 本題考查橢圓的方程的求法,橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,直線與橢圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正項(xiàng)數(shù)列{an}的奇數(shù)項(xiàng)a1,a3,a5,…a2k-1,…構(gòu)成首項(xiàng)a1=1等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比q=2的等比數(shù)列,且a1,a2,a3成等比數(shù)列,a4,a5,a7成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前2n項(xiàng)和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知正四面體ABCD的棱長(zhǎng)為2,若動(dòng)點(diǎn)P從底面△BCD的BC的中點(diǎn)出發(fā),沿著正四面體的側(cè)面運(yùn)動(dòng)到D點(diǎn)停止,則動(dòng)點(diǎn)P經(jīng)過的最短路徑長(zhǎng)為( 。
A.3B.$\sqrt{7}$C.2$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2},π})$),sinβ=-$\frac{12}{13}$,β是三象限角,求cos(β-α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列An:a1,a2,…an(n∈N*,n≥2)滿足a1=an=0,當(dāng)2≤k≤n(k∈N*)時(shí),(ak-ak-12=1,令S(An)=$\sum_{i=1}^{n}$ai
(1)直接寫出S(A5)的所有可能的值;
(2)求證:S(A2k+1)的最大值為k2,其中k∈N*;
(3)記S(An)的所有可能的值構(gòu)成的集合為Гn,若0∈Гn,求出n(n≥2)的所有取值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.給出如圖的程序框圖,程序輸出的結(jié)果是( 。
A.55B.56C.72D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列關(guān)系式中正確的是(  )
A.sin11°<sin168°<cos10°B.sin168°<sin11°<cos10°
C.sin11°<cos10°<sin168°D.sin168°<cos10°<sin11°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={$\frac{1}{2i}$,i2,|5i2|,$\frac{1+{i}^{2}}{i}$,-$\frac{{i}^{2}}{2}$},則集合A∩R+的子集個(gè)數(shù)為( 。
A.8B.7C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tanα,tanβ是方程x2-4x-2=0的兩個(gè)實(shí)根,求cos2(α+β)+2sin(α+β)cos(α+β)-2sin2(α+β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案