13.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2},π})$),sinβ=-$\frac{12}{13}$,β是三象限角,求cos(β-α)的值.

分析 利用同角三角函數(shù)的基本關(guān)系、兩角差的余弦公式求得cos(β-α)的值.

解答 解:∵cosα=-$\frac{3}{5}$,α∈($\frac{π}{2},π})$),
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{4}{5}$,
sinβ=-$\frac{12}{13}$,β是三象限角,
∴cosβ=-$\sqrt{{1-sin}^{2}β}$=-$\frac{5}{13}$,
∴cos(β-α)=cosβcosα+sinβsinα=-$\frac{5}{13}$•(-$\frac{3}{5}$)+(-$\frac{12}{13}$)•$\frac{4}{5}$=-$\frac{33}{65}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、兩角差的余弦公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.記數(shù)列{an}的前n項(xiàng)和為Sn,若存在實(shí)數(shù)M>0,使得對(duì)任意的n∈N*,都有|Sn|<M,則稱(chēng)數(shù)列{an}為“和有界數(shù)列”.下列命題正確的是( 。
A.若{an}是等差數(shù)列,且首項(xiàng)a1=0,則{an}是“和有界數(shù)列”
B.若{an}是等差數(shù)列,且公差d=0,則{an}是“和有界數(shù)列”
C.若{an}是等比數(shù)列,且公比|q|<1,則{an}是“和有界數(shù)列”
D.若{an}是等比數(shù)列,且{an}是“和有界數(shù)列”,則{an}的公比|q|<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.雙曲線(xiàn)兩焦點(diǎn)坐標(biāo)分別為F1(0,-5),F(xiàn)2(0,5),2a=8,則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為( 。
A.$\frac{x^2}{64}$-$\frac{y^2}{39}$=1B.$\frac{y^2}{16}$-$\frac{x^2}{9}$=1C.$\frac{x^2}{16}$-$\frac{y^2}{9}$=1D.$\frac{y^2}{16}$-$\frac{x^2}{25}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知圓x2+y2=4上有且只有四個(gè)點(diǎn)到直線(xiàn)12x-5y+m=0的距離為1,則實(shí)數(shù)m的取值范圍是(-13,13).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.計(jì)算機(jī)是將信息轉(zhuǎn)換成二進(jìn)制進(jìn)行處理的,二進(jìn)制即“逢二進(jìn)一”,如(1 101)2表示二進(jìn)制數(shù),將它轉(zhuǎn)換成十進(jìn)制數(shù)是1×23+1×22+0×21+1×20=13,那么將二進(jìn)制數(shù)($\underset{\underbrace{11…1}}{14個(gè)}$01)2轉(zhuǎn)換成十進(jìn)制數(shù)是( 。
A.216-1B.216-2C.216-3D.216-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)函數(shù) f(x)=$\left\{\begin{array}{l}{ln(-x),x<0}\\{-lnx,x>0}\end{array}\right.$,若f(m)>f(-m),則實(shí)數(shù)m的取值范圍是(-∞,-1)∪(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=$\frac{1}{2}$,過(guò)F1的直線(xiàn)交橢圓于A(yíng)、B兩點(diǎn),且△ABF2的周長(zhǎng)為8.
(1)求橢圓E的方程;
(2)若直線(xiàn)AB的斜率為$\sqrt{3}$,求△ABF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=log2x+x+2的零點(diǎn)個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.[x]表示不超過(guò)x的最大整數(shù),如[2.3]=2,[-1.3]=-2,[3]=3,若f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$,則函數(shù)g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域?yàn)閧-1,0}.

查看答案和解析>>

同步練習(xí)冊(cè)答案