已知橢圓的右焦點(diǎn)為(3,0),離心率為。
(1)求橢圓的方程。
(2)設(shè)直線(xiàn)與橢圓相交于A,B兩點(diǎn),M,N分別為線(xiàn)段,的中點(diǎn),若坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,求的值。
解:(1)由題意得,得。
結(jié)合,解得,。
所以,橢圓的方程為。
(2)由,得。
設(shè),則,
依題意,OM⊥ON,
易知,四邊形為平行四邊形,所以,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052118225298436838/SYS201205211824209218247265_DA.files/image013.png">,
所以。
即,
解得。
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
AC |
A、
| ||
B、2 | ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川成都外國(guó)語(yǔ)學(xué)校高三下二月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的右焦點(diǎn)為F2(1,0),點(diǎn) 在橢圓上.
(1)求橢圓方程;
(2)點(diǎn)在圓上,M在第一象限,過(guò)M作圓的切線(xiàn)交橢圓于P、Q兩點(diǎn),問(wèn)|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南省昆明市高三復(fù)習(xí)適應(yīng)性檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓與軸交于兩點(diǎn)
(Ⅰ)求的值;
(Ⅱ)若,過(guò)點(diǎn)與圓相切的直線(xiàn)與的另一交點(diǎn)為,求的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省高三12月質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題
已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,以點(diǎn)為圓心的圓與軸相切,且同時(shí)與軸相切于橢圓的右焦點(diǎn),則橢圓的離心率為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省保定市高三上學(xué)期期末調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓 的右焦點(diǎn)為且,設(shè)短軸的一個(gè)端點(diǎn)為,原點(diǎn)到直線(xiàn)的距離為,過(guò)原點(diǎn)和軸不重合的直線(xiàn)與橢圓相交于兩點(diǎn),且.
(1) 求橢圓的方程;
(2) 是否存在過(guò)點(diǎn)的直線(xiàn)與橢圓相交于不同的兩點(diǎn)且使得成立?若存在,試求出直線(xiàn)的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com