已知圓C的圓心在曲線y=上,圓C過坐標原點O,且與x軸、y軸交于A、B兩點,則△OAB的面積是(  )

A.2 B.3 C.4 D.8

 

C

【解析】設圓心C的坐標是(t,).

∵圓C過坐標原點,∴|OC|2=t2+,

設圓C的方程是

(x-t)2+(y-)2=t2+.

令x=0,得y1=0,y2=,

故B點的坐標為(0,).

令y=0,得x1=0,x2=2t,

故A點的坐標為(2t,0),

∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面積為4.故選C.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-7拋物線(解析版) 題型:選擇題

已知直線l1:4x-3y+11=0和直線l2:x=-1,拋物線y2=4x上一動點P到直線l1和直線l2的距離之和的最小值是(  )

A.2 B.3 C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-5橢圓(解析版) 題型:選擇題

橢圓+y2=1的兩個焦點為F1,F(xiàn)2,過F1作垂直于x軸的直線與橢圓相交,一個交點為P,則|PF2|=(  )

A. B. C. D.4

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-4直線與圓、圓與圓的位置關系(解析版) 題型:選擇題

若點P(3,-1)為圓(x-2)2+y2=25的弦AB的中點,則直線AB的方程為(  )

A.x+y-2=0 B.2x-y-7=0

C.2x+y-5=0 D.x-y-4=0

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:解答題

已知直線l:2x+y+2=0及圓C:x2+y2=2y.

(1)求垂直于直線l且與圓C相切的直線l′的方程;

(2)過直線l上的動點P作圓C的一條切線,設切點為T,求|PT|的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:選擇題

設圓的方程是x2+y2+2ax+2y+(a-1)2=0,若0<a<1,則原點與圓的位置關系是(  )

A.原點在圓上 B.原點在圓外

C.原點在圓內(nèi) D.不確定

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-2直線的交點坐標與距離公式(解析版) 題型:解答題

已知直線l1:x+a2y+1=0和直線l2:(a2+1)x-by+3=0(a,b∈R).

(1)若l1∥l2,求b的取值范圍;

(2)若l1⊥l2,求|ab|的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題

已知直線l經(jīng)過點(,2),其橫截距與縱截距分別為a、b(a、b均為正數(shù)),則使a+b≥c恒成立的c的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-5直線、平面垂直的判定及性質(zhì)(解析版) 題型:解答題

在如圖所示的幾何體中,AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.

(1)求證:AF∥平面BCE;

(2)求證:平面BCE⊥平面CDE.

 

 

查看答案和解析>>

同步練習冊答案