若點P(3,-1)為圓(x-2)2+y2=25的弦AB的中點,則直線AB的方程為(  )

A.x+y-2=0 B.2x-y-7=0

C.2x+y-5=0 D.x-y-4=0

 

D

【解析】由題意可知圓心C(2,0),則kPC==-1,那么kAB=1,且直線過點P(3,-1),則直線AB的方程為y+1=1×(x-3),即x-y-4=0.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-8曲線與方程(解析版) 題型:解答題

已知雙曲線-y2=1的左、右頂點分別為A1,A2,點P(x1,y1),Q(x1,-y1)是雙曲線上不同的兩個動點.求直線A1P與A2Q交點的軌跡E的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-5橢圓(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為

(1)求橢圓C的方程;

(2)已知動直線y=k(x+1)與橢圓C相交于A,B兩點.

①若線段AB中點的橫坐標為-,求斜率k的值;

②已知點M(-,0),求證:·為定值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

已知兩點A(0,-3),B(4,0),若點P是圓x2+y2-2y=0上的動點,則△ABP面積的最小值為(  )

A.6 B. C.8 D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:填空題

在平面直角坐標系xOy中,設(shè)過原點的直線l與圓C:(x-3)2+(y-1)2=4交于M、N兩點,若|MN|≥2,則直線l的斜率k的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:選擇題

方程|x|-1=所表示的曲線是(  )

A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:選擇題

已知圓C的圓心在曲線y=上,圓C過坐標原點O,且與x軸、y軸交于A、B兩點,則△OAB的面積是(  )

A.2 B.3 C.4 D.8

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-2直線的交點坐標與距離公式(解析版) 題型:選擇題

已知直線l的傾斜角為,直線l1經(jīng)過點A(3,2)和B(a,-1),且直線l1與直線l垂直,直線l2的方程為2x+by+1=0,且直線l2與直線l1平行,則a+b等于(  )

A.-4 B.-2 C.0 D.2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-6空間向量及運算(解析版) 題型:填空題

已知2a+b=(0,-5,10),c=(1,-2,-2),a·c=4,|b|=12,則以b,c為方向向量的兩直線的夾角為________.

 

查看答案和解析>>

同步練習冊答案