本題滿分12分,每小題各4分)
已知函數(shù),
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5c/a/kwnql.gif" style="vertical-align:middle;" />,求實(shí)數(shù)a的值;
(2)若函數(shù)的遞增區(qū)間為,求實(shí)數(shù)a的值;       
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)a的取值范圍.


解:(1)
(2)a=0
(3)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)集合;
(1)若,求的取值范圍;
(2)求函數(shù)的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)某皮制廠去年生產(chǎn)皮質(zhì)小包的年產(chǎn)量為10萬(wàn)件,每件皮質(zhì)小包的銷售價(jià)格平均為100元,生產(chǎn)成本為80元.從今年起工廠投入100萬(wàn)元科技成本,并計(jì)劃以后每年比上一年多投入100萬(wàn)元科技成本,預(yù)計(jì)產(chǎn)量每年遞增1萬(wàn)件.設(shè)第年每件小包的生產(chǎn)成本元,若皮制產(chǎn)品的銷售價(jià)格不變,第年的年利潤(rùn)為萬(wàn)元(今年為第一年).
(Ⅰ)求的表達(dá)式
(Ⅱ)問從今年算起第幾年的利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù):,其中是儀器的月產(chǎn)量.
(1) 將利潤(rùn)表示為月產(chǎn)量的函數(shù)
(2) 當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元(總收益=總成本+利潤(rùn)) ?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
計(jì)算:(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題12分)已知二次函數(shù).
(1)判斷命題:“對(duì)于任意的R(R為實(shí)數(shù)集),方程必有實(shí)數(shù)根”的真假,并寫出判斷過程
(2),若在區(qū)間內(nèi)各有一個(gè)零點(diǎn).求實(shí)數(shù)a的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題滿分12分)
一批救災(zāi)物資隨26輛汽車從某市以x km/h的速度勻速開往相距400 km的災(zāi)區(qū).為安全起見,每?jī)奢v汽車的前后間距不得小于km,車速不能超過100km/h,設(shè)從第一輛汽車出發(fā)開始到最后一輛汽車到達(dá)為止這段時(shí)間為運(yùn)輸時(shí)間,問運(yùn)輸時(shí)間最少需要多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知:函數(shù)對(duì)一切實(shí)數(shù)都有成立,且.
(1)求的值。                   
(2)求的解析式。               
(3)已知,設(shè)P:當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足P成立的的集合記為,滿足Q成立的的集合記為,求為全集)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)已知二次函數(shù)對(duì)都滿足,設(shè)函數(shù)
,).
(1)求的表達(dá)式;
(2)若,使成立,求實(shí)數(shù)的取值范圍;
(3)設(shè),,求證:對(duì)于,恒有.

查看答案和解析>>

同步練習(xí)冊(cè)答案