本題滿分12分)
一批救災(zāi)物資隨26輛汽車從某市以x km/h的速度勻速開往相距400 km的災(zāi)區(qū).為安全起見,每兩輛汽車的前后間距不得小于km,車速不能超過100km/h,設(shè)從第一輛汽車出發(fā)開始到最后一輛汽車到達(dá)為止這段時間為運(yùn)輸時間,問運(yùn)輸時間最少需要多少小時?

解:設(shè)運(yùn)輸時間為t小時,,t=+≥2=10.           ……7分
當(dāng)且僅當(dāng)=,x=80.t取“=”而80<100,所以當(dāng)x=80時t最小值為10.……11分
所以運(yùn)輸時間最少要10小時.                                           ……12

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)已知函數(shù),(),若同時滿足以下條件:
在D上單調(diào)遞減或單調(diào)遞增
② 存在區(qū)間[]D,使在[]上的值域是[],那么稱()為閉函數(shù)。
(1)求閉函數(shù)符合條件②的區(qū)間[];
(2)判斷函數(shù)是不是閉函數(shù)?若是請找出區(qū)間[];若不是請說明理由;
(3)若是閉函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本題滿分12分,每小題各4分)
已知函數(shù),
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/5c/a/kwnql.gif" style="vertical-align:middle;" />,求實(shí)數(shù)a的值;
(2)若函數(shù)的遞增區(qū)間為,求實(shí)數(shù)a的值;       
(3)若函數(shù)在區(qū)間上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(12分)已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/93/5/odvj9.gif" style="vertical-align:middle;" />,且同時滿足:(Ⅰ)對任意,總有;(Ⅱ);(Ⅲ)若,則有
(1)試求的值;
(2)試求函數(shù)的最大值;
(3)試證明:當(dāng)時,。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題10分)
求值:(1)
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設(shè)污水凈化管道(Rt∆FHE,H是直角頂點(diǎn))來處理污水,管道越長,污水凈化效果越好.設(shè)計(jì)要求管道的接口H是AB的中點(diǎn),E,F分別落在線段BC,AD上.已知AB=20米,AD=10米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數(shù),并寫出定義域;
(2)若sinθ+cosθ=,求此時管道的長度L;
(3)問:當(dāng)θ取何值時,污水凈化效果最好?
并求出此時管道的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知函數(shù)(a,b為常數(shù))且方程f(x)-x+12=0
有兩個實(shí)根為x1="3," x2=4.(1)求函數(shù)f(x)的解析式;
(2)設(shè)k>1,解關(guān)于x的不等式;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

醫(yī)學(xué)上為了研究傳染病在傳播的過程中病毒細(xì)胞的生長規(guī)律及其預(yù)防措施,將個病毒細(xì)胞注入到一只小白鼠的體內(nèi)進(jìn)行試驗(yàn).在試驗(yàn)過程中,得到病毒細(xì)胞的數(shù)量與時間的關(guān)系記錄如下表:

時間(小時)
1
2
3
4
5
6
7
病毒細(xì)胞總數(shù)(個)

2
4
8
16
32
64
已知該種病毒細(xì)胞在小白鼠體內(nèi)超過個時,小白鼠將死亡,但有一種藥物對殺死此種病毒有一定效果,用藥后,即可殺死其體內(nèi)的大部分病毒細(xì)胞.
(1)在16小時內(nèi),寫出病毒細(xì)胞的總數(shù)與時間的函數(shù)關(guān)系式;
(2)為了使小白鼠在實(shí)驗(yàn)過程中不死亡,最遲應(yīng)在何時注射該種藥物.(精確到整數(shù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某微機(jī)培訓(xùn)機(jī)構(gòu)打算購進(jìn)一批微機(jī)桌和鼠標(biāo)墊,市場價(jià)微機(jī)桌每張為150元,鼠標(biāo)墊每個為5元,該培訓(xùn)機(jī)構(gòu)老板聯(lián)系了兩家商場甲和乙,由于用貨量大,這兩家商場都給出了優(yōu)惠條件
商場甲:買一贈一,買一張微機(jī)桌,贈一個鼠標(biāo)墊
商場乙:打折,按總價(jià)的95%收款
該培訓(xùn)機(jī)構(gòu)需要微機(jī)桌60張,鼠標(biāo)墊個(),如果兩種商品只能在一家購買,請你幫助該培訓(xùn)機(jī)構(gòu)老板選擇在哪一家商場買更省錢?

查看答案和解析>>

同步練習(xí)冊答案