2.已知矩形ABCD與直角梯形ABEF,∠DAF=∠FAB=90°,點(diǎn)G為DF的中點(diǎn),AF=EF=$\frac{1}{2}AB=\sqrt{3}$,P在線段CD上運(yùn)動(dòng).
(1)證明:BF∥平面GAC;
(2)當(dāng)P運(yùn)動(dòng)到CD的中點(diǎn)位置時(shí),PG與PB長(zhǎng)度之和最小,求二面角P-CE-B的余弦值.

分析 (1)連接BD交AC于M,連MG,M為BD的中點(diǎn),證明GM∥BF,即可證明BF∥平面GAC.
(2)延遲AD至N,使DN=DG,連PN,PG,說明當(dāng)P、B、N三點(diǎn)共線時(shí),PG與PB長(zhǎng)度之和最小,AD,AB,AF兩兩垂直,如圖建立空間直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),求出平面PCE的一個(gè)法向量,平面BCE的一個(gè)法向量,利用空間向量的數(shù)量積求解二面角P-CE-B的余弦值.

解答 解:(1)連接BD交AC于M,連MG,M為BD的中點(diǎn).…(2分)
∴MG為△BFD的中位線,
∴GM∥BF,而BF?平面GAC,MG?平面GAC,
∴BF∥平面GAC.…(5分)
(2)延遲AD至N,使DN=DG,連PN,PG,則△PDG≌△PDN,∴PG=PN
當(dāng)P、B、N三點(diǎn)共線時(shí),PG與PB長(zhǎng)度之和最小,即PG與PB長(zhǎng)度之和最小
∵P為CD中點(diǎn),∴AD=DN.
在△ADF中,AD2+AF2=4DG2=4AD2,∴AD=1…(6分)
AD,AB,AF兩兩垂直,如圖建立空間直角坐標(biāo)系,

∴D(0,0,1),E($\sqrt{3}$,$\sqrt{3}$,0),B(0,2$\sqrt{3}$,0),C(0,2$\sqrt{3}$,1),
∴$\overrightarrow{CE}$=($\sqrt{3}$,-$\sqrt{3}$,-1),$\overrightarrow{BC}$=(0,0,1),$\overrightarrow{DC}$=(0,2$\sqrt{3}$,0)…(7分)
設(shè)$\overrightarrow{n}$=(x,y,z)為平面PCE的一個(gè)法向量,
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CE}=0}\\{\overrightarrow{n}•\overrightarrow{DC}=0}\end{array}\right.$即$\left\{\begin{array}{l}{\sqrt{3}x-\sqrt{3}y-z=0}\\{2\sqrt{3}y=0}\end{array}\right.$,
令x=1,y=0,z=$\sqrt{3}$,$\overrightarrow{n}=(1,0,\sqrt{3})$.
同理可得平面BCE的一個(gè)法向量$\overrightarrow{m}$=(1,1,0),…(10分)
設(shè)二面角P-CE-B的大小為θ,θ為鈍角,
∴cosθ=-$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{\overrightarrow{m}}||\overrightarrow{n}|}$=$-\frac{\sqrt{2}}{4}$,
∴求二面角P-CE-B的余弦值:-$\frac{\sqrt{2}}{4}$…(12分)

點(diǎn)評(píng) 本題考查二面角的求法,直線與平面平行的判定定理的應(yīng)用,考查空間想象能力以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,平面ABCD⊥平面BCF,四邊形ABCD是菱形,∠BCF=90°.
(1)求證:BF=DF;
(2)若∠BCD=60°,且直線DF與平面BCF所成角為45°,求二面角B-AF-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),且f(x)+g(x)=2x,若存在x0∈[1,2]使得等式af(x0)+g(2x0)=0成立,則實(shí)數(shù)a的取值范圍是[$\frac{17}{6},\frac{257}{60}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知復(fù)數(shù)z滿足(2+i)z=2-i(i為虛數(shù)單位),則z=(  )
A.3+4iB.3-4iC.$\frac{3}{5}$+$\frac{4}{5}$iD.$\frac{3}{5}$-$\frac{4}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知公差不為零的等差數(shù)列{an}中,a2=4,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn=an+2${\;}^{{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知各項(xiàng)均為正數(shù)的等差數(shù)列{an}滿足:a4=2a2,且a1,4,a4成等比數(shù)列,設(shè){an}的前n項(xiàng)和為Sn
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列$\left\{{\frac{S_n}{{n•{2^n}}}}\right\}$的前n項(xiàng)和為Tn,求證:Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖是一座橋的截面圖,橋的路面由三段曲線構(gòu)成,曲線AB和曲線DE分別是頂點(diǎn)在路面A、E的拋物線的一部分,曲線BCD是圓弧,已知它們?cè)诮狱c(diǎn)B、D處的切線相同,若橋的最高點(diǎn)C到水平面的距離H=6米,圓弧的弓高h(yuǎn)=1米,圓弧所對(duì)的弦長(zhǎng)BD=10米.

(1)求弧$\widehat{BCD}$所在圓的半徑;
(2)求橋底AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知向量$\overrightarrow a=(m,n),\overrightarrow b=(1,-2)$,若$|\overrightarrow a|=2\sqrt{5},\overrightarrow a=λ\overrightarrow b(λ<0)$,則m-n=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)空間幾何體的三視圖及部分?jǐn)?shù)據(jù)如下圖所示,則該幾何體的體積是(  )
A.$\frac{{32+8\sqrt{3}}}{3}$B.16C.12D.$32+8\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案