6.從編號(hào)為1,2,…,79,80的80件產(chǎn)品中,采用系統(tǒng)抽樣的方法抽取容量為5的樣本,若編號(hào)為10的產(chǎn)品在樣本中,則該樣本中產(chǎn)品的最大編號(hào)為(  )
A.72B.73C.74D.75

分析 根據(jù)系統(tǒng)抽樣的定義求出樣本間隔即可得到結(jié)論.

解答 解:樣本間隔為80÷5=16,因?yàn)榈谝粋(gè)號(hào)碼為10,
則最大的編號(hào)10+4×16=74,
故選:C.

點(diǎn)評(píng) 本題主要考查系統(tǒng)抽樣的定義和方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABC中,平面PAD⊥底面ABCD,其中底面ABCD為等腰梯形,AD∥BCPA=AB=BC=CD=2,PD=2$\sqrt{3}$,PA⊥PD,Q為PD的中點(diǎn).
(Ⅰ)證明:CQ∥平面PAB;
(Ⅱ)求三棱錐Q-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知P是圓x2+y2=1上的一動(dòng)點(diǎn),AB是圓(x-5)2+(y-12)2=4的一條動(dòng)弦(A,B是直徑的兩個(gè)端點(diǎn)),則$\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍是[140,192].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若數(shù)列{an}滿足a2-a1<a3-a2<a4-a3<…<an+1-an,則稱(chēng)數(shù)列{an}為“差遞增”數(shù)列.若數(shù)列{an}是“差遞增”數(shù)列,且其通項(xiàng)an與其前n項(xiàng)和Sn滿足3Sn=1+λ-2an(n∈N*),則λ的取值范圍是(-1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知向量$\overrightarrow a$與$\overrightarrow b$為單位向量,滿足$|\overrightarrow a-3\overrightarrow b|=\sqrt{13}$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知f(x)=|x-1|-|x-a|(a為常數(shù)).
(1)若f(2)<f(a)-1,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域?yàn)锳,且A⊆[-2,3],求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.根據(jù)如圖所示的偽代碼,最后輸出的結(jié)果是60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an2-2Sn=2-an(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{3}{{{a_{2n}}{a_{2n+2}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)=lgx+$\frac{3}{2}$x-9在區(qū)間(n,n+1)(n∈Z)上存在零點(diǎn),則n=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案