16.fx)是定義在區(qū)間[-c,c]上的奇函數(shù),其圖象如圖所示.

gx)=afx)+b,則下列關(guān)于函數(shù)gx)的敘述正確的是……………………( 。

A.若a<0,則函數(shù)gx)的圖象關(guān)于原點(diǎn)對(duì)稱

B.若a=-1,-2<b<0,則方程gx)=0有大于2的實(shí)根

C.若a≠0,b=2,則方程gx)=0有兩個(gè)實(shí)根

D.若a≥1,b<2,則方程gx)=0有三個(gè)實(shí)根

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)是定義在區(qū)間[a,b]上,值域?yàn)閇-3,5]的增函數(shù),則下列說法不正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在區(qū)間[-1,1]上的奇函數(shù),且f(1)=1,若m、n∈[-1,1],m+n≠0時(shí),有
f(m)+f(n)
m+n
>0.
(1)證明函數(shù)f(x)在[-1,1]上單調(diào)遞增;
(2)解不等式f(x+
1
2
)<f(1-x);
(3)若f(x)≤t2-2at+1對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在區(qū)間(-∞,+∞)上以2為周期的函數(shù),記Ik=(2k-1,2k+1](k∈Z).已知x∈I°時(shí),f(x)=x2,如圖.
(1)求函數(shù)f(x)的解析式;
(2)對(duì)于k∈N*,求集合Mk={a|使方程f(x)=ax在Ik上有兩個(gè)不相等的實(shí)數(shù)根}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件:(i)f(-1)=f(1)=0;(ii)對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|≤|u-v|.
(Ⅰ)證明:對(duì)任意的x∈[-1,1],都有x-1≤f(x)≤1-x;
(Ⅱ)判斷函數(shù)g(x)=
1+x,x∈[-1,0)
1-x,x∈[0,1]
是否滿足題設(shè)條件;
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的函數(shù)y=f(x),且使得對(duì)任意的u,v∈[-1,1],都有|f(u)-f(v)|=u-v.
若存在,請(qǐng)舉一例:若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2003•北京)設(shè)y=f(x)是定義在區(qū)間[-1,1]上的函數(shù),且滿足條件,①f(-1)=f(1)=0,②對(duì)任意的u、v∈[-1,1],都有|f(u)-f(v)|≤|u-v|
(Ⅰ)證明:對(duì)任意x∈[-1,1],都有x-1≤f(x)≤1-x
(Ⅱ)證明:對(duì)任意的u,v∈[-1,1]都有|f(u)-f(v)|≤1
(Ⅲ)在區(qū)間[-1,1]上是否存在滿足題設(shè)條件的奇函數(shù)y=f(x)且使得
|f(u)-f(v)|<|u-v|uv∈[0,
1
2
]
|f(u)-f(v)|=|u-v|uv∈[
1
2
,1]
;若存在請(qǐng)舉一例,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案