Processing math: 100%
16.已知過(guò)點(diǎn)A(-2,0)的直線與x=2相交于點(diǎn)C,過(guò)點(diǎn)B(2,0)的直線與x=-2相交于點(diǎn)D,若直線CD與圓x2+y2=4相切,則直線AC與BD的交點(diǎn)M的軌跡方程為x24+y2=1(x≠±2).

分析 設(shè)C(2,y1),D(-2,y2),求出直線CD的方程,根據(jù)切線的性質(zhì)得出y1y2=4,設(shè)M(x0,y0),用M點(diǎn)坐標(biāo)表示出y1,y2,代入y1y2=4得出軌跡方程.

解答 解:設(shè)C(2,y1),D(-2,y2),則直線CD的方程為y-y1=y1y24(x-2),
即(y1-y2)x-4y+2(y1+y2)=0,
∵直線CD與圓x2+y2=4相切,
2|y1+y2|y1y22+16=2,整理得y1y2=4.
設(shè)M(x0,y0),則直線AM的方程為y=y0y0+2(x+2),
令x=2得y=4y0x0+2,即y1=4y0x0+2,
同理得y2=4y0x02
∵y1y2=4.
4y0x0+24y0x02=4,
即x02+4y02=4,即x024+y02=1.
∴M的軌跡方程為:x24+y2=1(x≠±2).
故答案為:x24+y2=1(x≠±2).

點(diǎn)評(píng) 本題考查了軌跡方程的求解,直線與圓的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知A、B、C是拋物線y2=2px(p>0)上三個(gè)不同的點(diǎn),且AB⊥AC.
(Ⅰ)若A(1,2),B(4,-4),求點(diǎn)C的坐標(biāo);
(Ⅱ)若拋物線上存在點(diǎn)D,使得線段AD總被直線BC平分,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.?dāng)?shù)列{an}滿足a1=2,an-an-1=12n(n≥2,n∈N*),則an=5212n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某礦業(yè)公司對(duì)A、B兩個(gè)鐵礦項(xiàng)目調(diào)研結(jié)果是:A項(xiàng)目獲利40%的可能性為0.6,虧損20%的可能性為0.4;B項(xiàng)目獲利35%的可能性為0.6,虧損10%的可能性為0.2,不賠不賺的可能性為0.2.現(xiàn)計(jì)劃用不超過(guò)100萬(wàn)元的資金投資A、B兩個(gè)項(xiàng)目,假設(shè)投資A項(xiàng)目的資金為x(x≥0)萬(wàn)元,投資B項(xiàng)目的資金為y(y≥0)萬(wàn)元,且公司要求對(duì)A項(xiàng)目的投資不得低于B項(xiàng)目.
(1)請(qǐng)根據(jù)公司投資限制條件,寫出x,y滿足的條件,并將它們表示在平面xOy內(nèi);
(2)記投資A、B項(xiàng)目的利潤(rùn)分別為M和N,試寫出隨機(jī)變量M與N的分布列和期望E(M),E(N);
(3)根據(jù)(1)的條件和調(diào)研結(jié)果,試估計(jì)兩個(gè)項(xiàng)目的平均利潤(rùn)之和z=E(M)+E(N)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知△ABC的面積為30,且cosA=1213,則ABAC等于( �。�
A.72B.144C.150D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某班主任對(duì)全班40名學(xué)生進(jìn)行了作業(yè)量多少的調(diào)查.?dāng)?shù)據(jù)如下表:
認(rèn)為作業(yè)多認(rèn)為作業(yè)不多總計(jì)
喜歡玩游戲2010
不喜歡玩游戲28
總計(jì)
(Ⅰ)請(qǐng)完善上表中所缺的有關(guān)數(shù)據(jù);
(Ⅱ)根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“喜歡玩游戲與作業(yè)量的多少有關(guān)系”?
P(x2≥k)0.100    0.050    0.010
k2.706    3.841    6.635
附:χ2=nn11n22n12n212n11+n12n21+n22n11+n21n12+n22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在數(shù)列{an}中,已知a1=2,an+1=4an-3n+1
(1)證明:數(shù)列{an-n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線x2=4y,直線l的方程y=-2,動(dòng)點(diǎn)P在直線l上,過(guò)P點(diǎn)作拋物線的切線,切點(diǎn)分別為A,B,線段A,B的中點(diǎn)為Q
(Ⅰ)求證:直線AB恒過(guò)定點(diǎn);
(Ⅱ)求Q點(diǎn)軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若向量a=11,b=12,c=11,則c等于(  )
A.13a+23bB.23a13bC.13a23bD.23a+13b

查看答案和解析>>

同步練習(xí)冊(cè)答案