精英家教網 > 高中數學 > 題目詳情
已知a、b、c分別是△ABC的三個內角A、B、C的對邊.
(1)若△ABC面積S△ABC=
3
2
,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.
分析:(1)由A的度數求出sinA和cosA的值,再由c及三角形的面積,利用三角形的面積公式求出b的值,然后由b,c及cosA的值,利用余弦定理即可求出a的值;
(2)由三角形的三邊a,b及c,利用余弦定理表示出cosB,代入已知的a=ccosB,化簡可得出a2+b2=c2,利用勾股定理的逆定理即可判斷出三角形為直角三角形,在直角三角形ABC中,利用銳角三角函數定義表示出sinA,代入b=csinA,化簡可得b=a,從而得到三角形ABC為等腰直角三角形.
解答:解:(1)∵S△ABC=
1
2
bcsinA=
3
2
,
1
2
b•2sin60°=
3
2
,得b=1,
由余弦定理得:a2=b2+c2-2bccosA=12+22-2×1×2•cos60°=3,
所以a=
3

(2)由余弦定理得:a=c•
a2+c2-b2
2ac
,∴a2+b2=c2
所以∠C=90°;
在Rt△ABC中,sinA=
a
c
,所以b=c•
a
c
=a

所以△ABC是等腰直角三角形.
點評:此題考查了三角形的面積公式,余弦定理,正弦定理,以及特殊角的三角函數值,考查了勾股定理的逆定理,銳角三角函數的定義,熟練掌握定理及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知a、b、c分別是△ABC三個內角A、B、C的對邊.
(1)若b2=ac,求角B的范圍.
(2)若acosA=bcosB,試判斷△ABC的形狀,并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c分別是△ABC的三個內角A,B,C所對的邊,若a=1,b=
3
,A+C=2B,則sinC=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a、b、c分別是△ABC的三個內角A、B、C所對的邊,若
cosB
cosC
=-
b
2a+c
,則B=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c分別是△ABC中角A,B,C的對邊,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大小;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知a,b,c分別是△ABC的三個內角A,B,C的對邊,且滿足2asinB-
3
b=0.
(Ⅰ)求角A的大小;
(Ⅱ)當A為銳角時,求函數y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步練習冊答案