農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長勢情況,從甲、乙兩種麥苗的試驗田中各抽取6株麥苗測量麥苗的株高,數(shù)據(jù)如下:(單位:)
甲:9,10,11,12,10,20
乙:8,14,13,10,12,21.

(1)在上面給出的方框內繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;
(2)分別計算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長勢情況.

(1)詳見解析;(2),,因為,所以乙種麥苗平均株高較高,又因為,所以甲種麥苗長的較為整齊.

解析試題分析:(1)根據(jù)所給的數(shù)據(jù)作出相應的莖葉圖即可;(2)根據(jù)平均數(shù)和方差的計算公式,即可計算出平均數(shù)和方差,由平均數(shù)越大,說明平均株高越高,方差越小,說明麥苗長的較整齊的原理,結合計算出的平均數(shù)與方差的大小作出判斷即可.
試題解析:(1)莖葉圖如圖所示:

(2)



因為,所以乙種麥苗平均株高較高,又因為,所以甲種麥苗長的較為整齊.
考點:1.莖葉圖;2.樣本的數(shù)字特征:平均數(shù)與方差.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某種水果的單個質量在500g以上視為特等品.隨機抽取1000個該水果,結果有50個特等品.將這50個水果的質量數(shù)據(jù)分組,得到下邊的頻率分布表.

(1)估計該水果的質量不少于560g的概率;
(2)若在某批水果的檢測中,發(fā)現(xiàn)有15個特等品,據(jù)此估計該批水果中沒有達到特等品的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調查,統(tǒng)計數(shù)據(jù)如下表所示:

 
積極參加班級工作
不太主動參加班級工作
合計
學習積極性高
18
7
25
學習積極性一般
6
19
25
合計
24
26
50
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法點撥:學生的學習積極性與對待班級工作的態(tài)度是否有關系?并說明理由.(參考下表)
P(K2≥k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。

區(qū)間





人數(shù)

a
b
 
 
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某旅行社為調查市民喜歡“人文景觀”景點是否與年齡有關,隨機抽取了55名市民,得到數(shù)據(jù)如下表:

 
喜歡
不喜歡
合計
大于40歲
20
5
25
20歲至40歲
10
20
30
合計
30
25
55
(1)判斷是否有99.5%的把握認為喜歡“人文景觀”景點與年齡有關?
(2)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機抽取6人作進一步調查,將這6位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.
下面的臨界值表供參考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

衡水某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數(shù)學應用題’得分率作用”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規(guī)教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數(shù)學應用題上的得分率基本一致,試驗結束后,統(tǒng)計幾次數(shù)學應用題測試的平均成績(均取整數(shù))如下表所示:

 
60分
以下
61~
70分
71~
80分
81~
90分
91~
100分
甲班
(人數(shù))
3
6
11
18
12
乙班
(人數(shù))
4
8
13
15
10
現(xiàn)規(guī)定平均成績在80分以上(不含80分)的為優(yōu)秀.
(1)試分別估計兩個班級的優(yōu)秀率.
(2)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷“加強‘語文閱讀理解’訓練對提高‘數(shù)學應用題’得分率”是否有幫助?
 
優(yōu)秀人數(shù)
非優(yōu)秀人數(shù)
總計
甲班
 
 
 
乙班
 
 
 
總計
 
 
 
參考公式及數(shù)據(jù):K2=,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某中學高三年級從甲、乙兩個班級各選出七名學生參加數(shù)學競賽,他們取得的成績(滿分100分)的莖葉圖如圖所示,其中甲班學生的平均分是85,乙班學生成績的中位數(shù)是83.

(1)求xy的值;
(2)計算甲班七名學生成績的方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)根據(jù)莖葉圖計算樣本均值.
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某高校在2012年自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組:第1組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率;
(2)若該校決定在筆試成績較高的第3,4,5組中用分層抽樣抽取6名學生進入第二輪面試,
(ⅰ)已知學生甲和學生乙的成績均在第三組,求學生甲和學生乙恰有一人進入第二輪面試的概率;
(ⅱ)學校決定在這已抽取到的6名學生中隨機抽取2名學生接受考官L的面試,設第4組中有名學生被考官L面試,求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案