【題目】如圖,四棱錐的底面四邊形ABCD為菱形,平面ABCD,,,E為BC的中點.
求證:平面PAD;
求二面角的平面角的余弦值.
【答案】(1)詳見解析;(2)
【解析】
連結(jié)BD,證明推出然后證明平面PAD;以點D為原點,DA,DE,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標系求出平面BAD的一個法向量,平面PBA一個法向量,利用空間向量的數(shù)量積求解平面PAD與平面PBC所成角的二面角的平面角的余弦值.
連結(jié)BD,由已知得與都是正三角形.
又因為點E為邊BC的中點,所以
又因為,所以.
又平面ABCD,平面ABCD,所以
又因為,AD,平面PAD,所以平面
以點D為原點,DA,DE,DP所在直線分別為x軸,y軸,z軸建立空
間直角坐標系.
由知平面BAD的一個法向量為
,0,,0,所以,.
設(shè)平面PBA一個法向量為,
由,得,.
取,則,故.
設(shè)與的夾角為,則
所以平面PAD與平面PBC所成角的二面角的平面角的余弦值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們國家正處于老齡化社會中,老有所依也是政府的民生工程.某市有戶籍的人口共萬,其中老人(年齡歲及以上)人數(shù)約有萬,為了了解老人們的健康狀況,政府從老人中隨機抽取人并委托醫(yī)療機構(gòu)免費為他們進行健康評估,健康狀況共分為不能自理、不健康尚能自理、基本健康、健康四個等級,并以歲為界限分成兩個群體進行統(tǒng)計,樣本分布被制作成如下圖表:
(1)若從樣本中的不能自理的老人中采取分層抽樣的方法再抽取人進一步了解他們的生活狀況,則兩個群體中各應(yīng)抽取多少人?
(2)估算該市歲以上長者占全市戶籍人口的百分比;
(3)政府計劃為歲及以上長者或生活不能自理的老人每人購買元/年的醫(yī)療保險,為其余老人每人購買元/年的醫(yī)療保險,不可重復(fù)享受,試估計政府執(zhí)行此計劃的年度預(yù)算.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量, 獲得本場比賽勝利,最終人機大戰(zhàn)總比分定格.人機大戰(zhàn)也引發(fā)全民對圍棋的關(guān)注,某學(xué)校社團為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機抽取了100名學(xué)生進行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時間不低于40分鐘的學(xué)生稱為“圍棋迷”.
(Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認為“圍棋迷”與性別有關(guān)?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨立的,求的平均值和方差.
附: ,其中.
0.05 | 0.01 | |
td style="width:124.95pt; border-top-style:solid; border-top-width:0.75pt; border-right-style:solid; border-right-width:0.75pt; border-left-style:solid; border-left-width:0.75pt; padding:3.38pt 5.03pt; vertical-align:middle"> | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線的極坐標方程為,以極點為原點,極軸為軸的非負半軸建立平面直角坐標系,直線的參數(shù)方程為(為參數(shù), ).
(1)求曲線的直角坐標方程和直線的普通方程;
(2)若曲線上的動點到直線的最大距離為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C過點M(0,-2)、N(3,1),且圓心C在直線x+2y+1=0上.
(1)求圓C的方程;
(2)設(shè)直線ax-y+1=0與圓C交于A,B兩點,是否存在實數(shù)a,使得過點P(2,0)的直線l垂直平分弦AB?若存在,求出實數(shù)a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某水文觀測點的歷史統(tǒng)計數(shù)據(jù),得到某河流水位(單位:米)的頻率分布直方圖如下:將河流水位在以上6段的頻率作為相應(yīng)段的概率,并假設(shè)每年河流水位互不影響.
(Ⅰ)求未來三年,至多有1年河流水位的概率(結(jié)果用分數(shù)表示);
(Ⅱ)該河流對沿河企業(yè)影響如下:當(dāng)時,不會造成影響;當(dāng)時,損失10000元;當(dāng)時,損失60000元,為減少損失,現(xiàn)有三種應(yīng)對方案:
方案一:防御35米的最高水位,需要工程費用3800元;
方案二:防御不超過31米的水位,需要工程費用2000元;
方案三:不采用措施:試比較哪種方案較好,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com