分析 (1)利用已知條件轉(zhuǎn)化推出$\left\{{{a_n}-{2^n}}\right\}$是以2為首項(xiàng),3為公差的等差數(shù)列,然后求解通項(xiàng)公式.
(2)化簡(jiǎn)bn=$\frac{a_n}{2^n}$,然后利用錯(cuò)位相減法求和求解即可.
解答 解:(1)證明:當(dāng)n≥2時(shí),${a_n}={a_{n-1}}+{2^{n-1}}+3={a_{n-1}}+{2^n}-{2^{n-1}}+3$,
∴${a_n}-{2^n}-({a_{n-1}}-{2^{n-1}})=3$,
又a1=4,∴a1-2=2,
故$\left\{{{a_n}-{2^n}}\right\}$是以2為首項(xiàng),3為公差的等差數(shù)列,
∴${a_n}-{2^n}=2+(n-1)×3=3n-1$,
∴${a_n}={2^n}+3n-1$.
(2)${b_n}=\frac{a_n}{2^n}=\frac{{{2^n}+3n-1}}{2^n}=1+\frac{3n-1}{2^n}$,
∴${S_n}=(1+\frac{2}{2})+(1+\frac{5}{2^2})+…+(1+\frac{3n-1}{2^n})$=$n+(\frac{2}{2}+\frac{5}{2^2}+…+\frac{3n-1}{2^n})$,
令${T}_{n}=\frac{2}{2}+\frac{5}{{2}^{2}}+…+\frac{3n-1}{{2}^{n}}$,①
則$\frac{1}{2}{T_n}=\frac{2}{2^2}+\frac{5}{2^3}+…+\frac{3n-1}{{{2^{n+1}}}}$,②
①-②得:$\frac{1}{2}{T_n}=1+\frac{3}{2^2}+\frac{3}{2^3}+…+\frac{3}{2^n}-\frac{3n-1}{{{2^{n+1}}}}$,
=$1+3×\frac{{\frac{1}{4}[{1-{{(\frac{1}{2})}^{n-1}}}]}}{{1-\frac{1}{2}}}-\frac{3n-1}{{{2^{n+1}}}}$=$\frac{5}{2}-\frac{3n+5}{{{2^{n+1}}}}$,
∴${S_n}=n+5-\frac{3n+5}{2^n}$.
點(diǎn)評(píng) 本題考查數(shù)列的遞推關(guān)系式的應(yīng)用,數(shù)列求和,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 命題①②??都正確 | B. | 命題①②??都不正確 | ||
C. | 命題?①正確,命題?②不正確 | D. | 命題?①不正確,命題?②正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若α⊥γ,β⊥γ,則α∥β | B. | 若l1∥α,l1⊥β,則α∥β | ||
C. | 若α∥β,l1∥α,l2∥β,則l1∥l2 | D. | 若α⊥β,l1⊥α,l2⊥β,則l1⊥l2 | ||
E. | 若α⊥β,l1⊥α,l2⊥β,則l1⊥l2 | F. | 若α⊥β,l1⊥α,l2⊥β,則l1⊥l2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,ln4) | B. | (-∞,0)∪(ln4,+∞) | C. | (ln4,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1或2 | B. | 1 | C. | 2 | D. | 1或-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,-1) | B. | (1,+∞) | C. | (-1,1) | D. | [0,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com