13.定義在R上的函數(shù)f(x)的導函數(shù)為f'(x),已知xf'(x)+f(x)<-f'(x),f(2)=$\frac{1}{3}$,則不等式f(ex-2)-$\frac{1}{{{e^x}-1}}$<0(其中e為自然對數(shù)的底數(shù))的解集為( 。
A.(0,ln4)B.(-∞,0)∪(ln4,+∞)C.(ln4,+∞)D.(2,+∞)

分析 根據(jù)條件構(gòu)造函數(shù)g(x)=(x+1)f(x),求函數(shù)的導數(shù),研究函數(shù)的單調(diào)性,將不等式進行轉(zhuǎn)化求解即可.

解答 解:由xf'(x)+f(x)<-f'(x),得xf'(x)+f(x)+f′(x)<0,
即(x+1)f'(x)+f(x)<0,
設(shè)g(x)=(x+1)f(x),
則g′(x)=f(x)+(x+1)f'(x)<0,
即g(x)為減函數(shù),
∵f(2)=$\frac{1}{3}$,∴g(2)=3f(2)=3×$\frac{1}{3}$=1,
則不等式f(ex-2)-$\frac{1}{{{e^x}-1}}$<0等價為,
當x>0時,ex-1>0,則不等式等價為(ex-1)f(ex-2)-1<0,即(ex-2+1)f(ex-2)<1,
即g(ex-2)<g(2),
則ex-2>2,則ex>4,則x>ln4,
當x<0時,ex-1<0,則不等式等價為(ex-1)f(ex-2)-1>0,即(ex-2+1)f(ex-2)>1,
即g(ex-2)>g(2),
則ex-2<2,則ex>4,則x<ln4,
∵x<0,
∴此時不等式的解為x<0,
綜上不等式的解為x<0或x>ln4,
即不等式的解集為(-∞,0)∪(ln4,+∞),
故選:B

點評 本題主要考查不等式的求解,根據(jù)條件構(gòu)造函數(shù),利用函數(shù)單調(diào)性和導數(shù)之間的關(guān)系進行轉(zhuǎn)化求解是解決本題的關(guān)鍵.,注意要對分母進行討論.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

3.函數(shù)f(x)=ax+$\frac{x}$(a,b是非零實數(shù))的圖象過點(1,3)和(2,3).
(1)求函數(shù)f(x)的解析式;
(2)判斷函數(shù)f(x)奇偶性,并給出證明;
(3)用定義證明函數(shù)f(x)在區(qū)間(2,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.有一個幾何體的正視圖、側(cè)視圖、俯視圖如圖所示,則該幾何體的表面積為( 。
A.48πB.36πC.24πD.12π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線y=kx與曲線y=e|lnx|-|x-2|有3個公共點時,實數(shù)k的取值范圍( 。
A.$(0,\frac{1}{e})$B.(0,1)C.(1,e]D.$(\frac{1}{e},1)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}中,a1=4,an=an-1+2n-1+3(n≥2,n∈N*).
(1)證明數(shù)列{an-2n}是等差數(shù)列,并求{an}的通項公式;
(2)設(shè)bn=$\frac{a_n}{2^n}$,求bn的前n和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某廠擬用集裝箱托運甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運能力等限制數(shù)據(jù)列在表中,如何設(shè)計甲、乙兩種貨物應各托運的箱數(shù)可以獲得最大利潤,最大利潤是多少?
貨物體積(m3/箱)重量(50kg/箱)利潤(百元/箱)
5220
4510
托運限制2413

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x|2≤2x≤4},B={x|0<log2x<2},則A∪B=(  )
A.[1,4]B.[1,4)C.(1,2)D.[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.直線ax+2y-1=0與直線2x-3y-1=0垂直,則a的值為(  )
A.3B.-3C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.命題?x∈R,x2-2x+4≤0的否定為?x∈R,x2-2x+4>0.

查看答案和解析>>

同步練習冊答案