分析 分類討論,結(jié)合二次函數(shù)的性質(zhì),即可求出實數(shù)m的取值范圍.
解答 解:1-m=0時,方程為2x-1=0,x=$\frac{1}{2}$,滿足題意;
1-m≠0時,∵關(guān)于x的方程(1-m)x2+2mx-1=0的所有根都是正實數(shù),
∴$\left\{\begin{array}{l}{△=4{m}^{2}+4(1-m)≥0}\\{-\frac{2m}{2(1-m)}>0}\\{\frac{-1}{1-m}>0}\end{array}\right.$,
∴m>1.
綜上所述,m≥1.
故答案為:m≥1.
點評 本題主要考查根的分布與系數(shù)的關(guān)系,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 168 | C. | 9 | D. | 169 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $log_2{\frac{15}{2}}$ | C. | 1 | D. | $-log_2{\frac{15}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<y<x<1 | B. | 1<y<x | C. | 1<x<y | D. | 0<x<y<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2]∪[-1,+∞) | B. | (-∞,-2)∪(-1,+∞) | C. | {y|y≠-1,y∈R} | D. | {y|y≠-2,y∈R} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com