現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學從中任取3道題解答.
(I)求張同學至少取到1道乙類題的概率;
(II)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學答對甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.用表示張同學答對題的個數(shù),求的分布列和數(shù)學期望.

(I)
(II)

X
0
1
2
3
P




 

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

一個口袋中有個白球和個紅球,每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.
(Ⅰ)試用含的代數(shù)式表示一次摸球中獎的概率
(Ⅱ)若,求三次摸球恰有一次中獎的概率;
(Ⅲ)記三次摸球恰有一次中獎的概率為,當為何值時,取最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某產(chǎn)品的三個質(zhì)量指標分別為x, y, z, 用綜合指標S =" x" + y + z評價該產(chǎn)品的等級. 若S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標列表如下:

產(chǎn)品編號
A1
A2
A3
A4
A5
質(zhì)量指標(x, y, z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產(chǎn)品編號
A6
A7
A8
A9
A10
質(zhì)量指標(x, y, z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(Ⅰ) 利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(Ⅱ) 在該樣品的一等品中, 隨機抽取兩件產(chǎn)品,
(1) 用產(chǎn)品編號列出所有可能的結(jié)果;
(2) 設(shè)事件B為 “在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標S都等于4”, 求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

甲、乙兩支排球隊進行比賽,約定先勝局者獲得比賽的勝利,比賽隨即結(jié)束。除第五局甲隊獲勝的概率是外,其余每局比賽甲隊獲勝的概率都是。假設(shè)各局比賽結(jié)果相互獨立。
(Ⅰ)分別求甲隊以勝利的概率;
(Ⅱ)若比賽結(jié)果為求,則勝利方得分,對方得分;若比賽結(jié)果為,則勝利方得分、對方得分。求乙隊得分的分布列及數(shù)學期望。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天

(Ⅰ)求此人到達當日空氣重度污染的概率
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量優(yōu)良的天數(shù),求X的分布列與數(shù)學期望.
(Ⅲ)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2013年3月2日,國家環(huán)保部發(fā)布了新修訂的《環(huán)境空氣質(zhì)量標準》.其中規(guī)定:居民區(qū)的PM2.5年平均濃度不得超過35微克/立方米,PM2.5的24小時平均濃度不得超過75微克/立方米. 某城市環(huán)保部門隨機抽取了一居民區(qū)去年20天PM2.5的24小時平均濃度的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如下:

組別
PM2.5濃度
(微克/立方米)
頻數(shù)(天)
頻率
 第一組
(0,25]
5
0.25
第二組
(25,50]
10
0.5
第三組
(50,75]
3
0.15
第四組
(75,100)
2
0.1
(Ⅰ)從樣本中PM2.5的24小時平均濃度超過50微克/立方米的5天中,隨機抽取2天,求恰好有一天PM2.5的24小時平均濃度超過75微克/立方米的概率;
(Ⅱ)求樣本平均數(shù),并根據(jù)樣本估計總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關(guān)數(shù)據(jù),如下表所示.

一次購物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顧客數(shù)(人)

30
25

10
結(jié)算時間(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.(注:將頻率視為概率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某學;@球隊、羽毛球隊、乒乓球隊的某些隊員不止參加了一支球隊,具體情況如圖所示,現(xiàn)從中隨機抽取一名隊員,求:

(1)該隊員只屬于一支球隊的概率;
(2)該隊員最多屬于兩支球隊的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某部門對當?shù)爻青l(xiāng)居民進行了主題為“你幸福嗎?”的幸福指數(shù)問卷調(diào)査,并在已被問卷調(diào)查的居民中隨機抽選部分居民參加“幸福職業(yè)”或“幸福愿景”的座談會,被邀請的居民只能選擇其中一場座談會參加.已知A小區(qū)有1人,B小區(qū)有3人收到邀請并將參加一場座談會,若A小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會的概率是, B小區(qū)已經(jīng)收到邀請的人選擇參加“幸福愿景”座談會的概率是
(Ⅰ)求A、B兩個小區(qū)已收到邀請的人選擇“幸福愿景”座談會的人數(shù)相等的概率;
(Ⅱ)在參加“幸福愿景”座談會的人中,記A、B兩個小區(qū)參會人數(shù)的和為,試求的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案