某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x, y, z, 用綜合指標(biāo)S =" x" + y + z評價該產(chǎn)品的等級. 若S≤4, 則該產(chǎn)品為一等品. 現(xiàn)從一批該產(chǎn)品中, 隨機抽取10件產(chǎn)品作為樣本, 其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號 | A1 | A2 | A3 | A4 | A5 |
質(zhì)量指標(biāo)(x, y, z) | (1,1,2) | (2,1,1) | (2,2,2) | (1,1,1) | (1,2,1) |
產(chǎn)品編號 | A6 | A7 | A8 | A9 | A10 |
質(zhì)量指標(biāo)(x, y, z) | (1,2,2) | (2,1,1) | (2,2,1) | (1,1,1) | (2,1,2) |
科目:高中數(shù)學(xué) 來源: 題型:解答題
一河南旅游團到安徽旅游.看到安徽有很多特色食品,其中水果類較有名氣的有:懷遠石榴、碭山梨、徽州青棗等19種,點心類較有名氣的有:一品玉帶糕、徽墨酥、八公山大救駕等38種,小吃類較有名氣的有:符離集燒雞、無為熏鴨、合肥龍蝦等57種.該旅游團的游客決定按分層抽樣的方法從這些特產(chǎn)中買6種帶給親朋品嘗.
(Ⅰ)求應(yīng)從水果類、點心類、小吃類中分別買回的種數(shù);
(Ⅱ)若某游客從買回的6種特產(chǎn)中隨機抽取2種送給自己的父母,
①列出所有可能的抽取結(jié)果;
②求抽取的2種特產(chǎn)均為小吃的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數(shù)中等可能隨機產(chǎn)生.
(Ⅰ)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(Ⅱ)甲、乙兩同學(xué)依據(jù)自己對程序框圖的理解,各自編寫程序重復(fù)運行n次后,統(tǒng)計記錄了輸出y的值為i(i=1,2,3)的頻數(shù).以下是甲、乙所作頻數(shù)統(tǒng)計表的部分數(shù)據(jù).
甲的頻數(shù)統(tǒng)計表(部分)
運行 次數(shù)n | 輸出y的值 為1的頻數(shù) | 輸出y的值 為2的頻數(shù) | 輸出y的值 為3的頻數(shù) |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
運行 次數(shù)n | 輸出y的值 為1的頻數(shù) | 輸出y的值 為2的頻數(shù) | 輸出y的值 為3的頻數(shù) |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)以往資料統(tǒng)計,大學(xué)生購買某品牌平板電腦時計劃采用分期付款的期數(shù)ζ的分布列為
ζ | 1 | 2 | 3 |
P | 0.4 | 0.25 | 0.35 |
1 | 2 | 3 | |
η | 200 | 250 | 300 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
百貨大樓在五一節(jié)舉行抽獎活動,規(guī)則是:從裝有編為、、、四個小球的抽獎箱中同時抽出兩個小球,兩個小球號碼相加之和等于中一等獎,等于中二等獎,等于中三等獎。
(1)求中三等獎的概率;
(2)求中獎的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
甲、乙兩人玩猜數(shù)字游戲,規(guī)則如下:
①連續(xù)競猜次,每次相互獨立;
②每次竟猜時,先由甲寫出一個數(shù)字,記為,再由乙猜測甲寫的數(shù)字,記為,已知,若,則本次競猜成功;
③在次競猜中,至少有次競猜成功,則兩人獲獎.
(Ⅰ) 求甲乙兩人玩此游戲獲獎的概率;
(Ⅱ)現(xiàn)從人組成的代表隊中選人參加此游戲,這人中有且僅有對雙胞胎,記選出的人中含有雙胞胎的對數(shù)為,求的分布列和期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位實行休年假制度三年來,名職工休年假的次數(shù)進行的調(diào)查統(tǒng)計結(jié)果如下表所示:
休假次數(shù) | ||||
人數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
現(xiàn)有10道題,其中6道甲類題,4道乙類題,張同學(xué)從中任取3道題解答.
(I)求張同學(xué)至少取到1道乙類題的概率;
(II)已知所取的3道題中有2道甲類題,1道乙類題.設(shè)張同學(xué)答對甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.用表示張同學(xué)答對題的個數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某醫(yī)院將一專家門診已診的1000例病人的病情及診斷所用時間(單位:分鐘)進行了統(tǒng)計,如下表.若視頻率為概率,請用有關(guān)知識解決下列問題.
病癥及代號 | 普通病癥 | 復(fù)診病癥 | 常見病癥 | 疑難病癥 | 特殊病癥 |
人數(shù) | 100 | 300 | 200 | 300 | 100 |
每人就診時間(單位:分鐘) | 3 | 4 | 5 | 6 | 7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com