求曲線與軸在區(qū)間上所圍成陰影部分的面積S.
科目:高中數(shù)學 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)
Monte-Carlo方法在解決數(shù)學問題中有廣泛的應用。下面是利用Monte-Carlo方法來計算定積分?紤]定積分,這時等于由曲線,軸,所圍成的區(qū)域M的面積,為求它的值,我們在M外作一個邊長為1正方形OABC。設想在正方形OABC內(nèi)隨機投擲個點,若個點中有個點落入中,則的面積的估計值為,此即為定積分的估計值I。向正方形中隨機投擲10000個點,有個點落入?yún)^(qū)域M
(1)若=2099,計算I的值,并以實際值比較誤差是否在5%以內(nèi)
(2)求的數(shù)學期望
(3)用以上方法求定積分,求I與實際值之差在區(qū)間(—0.01,0.01)的概率
附表:
n | 1899 | 1900 | 1901 | 2099 | 2100 | 2101 |
P(n) | 0.0058 | 0.0062 | 0.0067 | 0.9933 | 0.9938 | 0.9942 |
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆江西省高二下學期期中考試文科數(shù)學試卷(解析版) 題型:解答題
設函數(shù),其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記曲線在點(其中)處的切線為,與軸、軸所圍成的三角形面積為,求的最大值.
【解析】第一問利用由已知,所以,
由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;
第二問中,因為,所以曲線在點處切線為:.
切線與軸的交點為,與軸的交點為,
因為,所以,
, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當時,有最大值,此時,
解:(Ⅰ)由已知,所以, 由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減;
在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;
即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(Ⅱ)因為,所以曲線在點處切線為:.
切線與軸的交點為,與軸的交點為,
因為,所以,
, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當時,有最大值,此時,
所以,的最大值為
查看答案和解析>>
科目:高中數(shù)學 來源:寧夏銀川一中2011-2012學年高三第六次月考試題(數(shù)學理) 題型:解答題
已知函數(shù),其中.
(Ⅰ) 求函數(shù)的極小值點;
(Ⅱ)若曲線在點處的切線都與軸垂直,問是否存在常數(shù),使函數(shù)在區(qū)間上存在零點?如果存在,求的值:如果不存在,請說明理由.
請考生在22,23,24三題中任選一題做答,如果多做,則按所做的第一題記分.做答時用2B鉛筆在答題卡把所選題目的題號涂黑
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com