設函數(shù),其中為自然對數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)記曲線在點(其中)處的切線為,與軸、軸所圍成的三角形面積為,求的最大值.
【解析】第一問利用由已知,所以,
由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;
第二問中,因為,所以曲線在點處切線為:.
切線與軸的交點為,與軸的交點為,
因為,所以,
, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當時,有最大值,此時,
解:(Ⅰ)由已知,所以, 由,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減;
在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;
即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.
(Ⅱ)因為,所以曲線在點處切線為:.
切線與軸的交點為,與軸的交點為,
因為,所以,
, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當時,有最大值,此時,
所以,的最大值為
科目:高中數(shù)學 來源:2013-2014學年廣東省揭陽市高三學業(yè)水平考試文科數(shù)學試卷(解析版) 題型:解答題
設函數(shù),其中,為正整數(shù),、、均為常數(shù),曲線在處的切線方程為.
(1)求、、的值;
(2)求函數(shù)的最大值;
(3)證明:對任意的都有.(為自然對數(shù)的底)
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江西省七校高三上學期第一次聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù),其中a>0.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若直線是曲線的切線,求實數(shù)a的值;
(Ⅲ)設,求在區(qū)間上的最大值(其中e為自然對的底數(shù))。
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年浙江省高三12月月考理科數(shù)學試卷(解析版) 題型:解答題
(滿分15分)設函數(shù),,(其中為自然底數(shù));
(Ⅰ)求()的最小值;
(Ⅱ)探究是否存在一次函數(shù)使得且對一切恒成立;若存在,求出一次函數(shù)的表達式,若不存在,說明理由;
(Ⅲ)數(shù)列中,,,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源:陜西省模擬題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年四川省成都市模擬考試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)其中為自然對數(shù)的底數(shù), .(Ⅰ)設,求函數(shù)的最值;(Ⅱ)若對于任意的,都有成立,求的取值范圍.
【解析】第一問中,當時,,.結(jié)合表格和導數(shù)的知識判定單調(diào)性和極值,進而得到最值。
第二問中,∵,,
∴原不等式等價于:,
即, 亦即
分離參數(shù)的思想求解參數(shù)的范圍
解:(Ⅰ)當時,,.
當在上變化時,,的變化情況如下表:
|
- |
+ |
|
||
1/e |
∴時,,.
(Ⅱ)∵,,
∴原不等式等價于:,
即, 亦即.
∴對于任意的,原不等式恒成立,等價于對恒成立,
∵對于任意的時, (當且僅當時取等號).
∴只需,即,解之得或.
因此,的取值范圍是
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com