已知
1
log2a
+
1
log3a
=2
,則a=
6
6
分析:利用換底公式對(duì)等式進(jìn)行化簡(jiǎn),便可求出a值.
解答:解:
1
log2a
+
1
log3a
=2
,
可化為loga2+loga3=2,即loga6=2,
所以a2=6,又a>0,所以a=
6

故答案為:
6
點(diǎn)評(píng):本題主要考查對(duì)數(shù)的運(yùn)算性質(zhì)及其應(yīng)用,考查運(yùn)算能力,熟記相關(guān)公式并能靈活應(yīng)用是解決該類題目的基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2(x+
π
12
)
,g(x)=1+
1
2
sin2x

(Ⅰ)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對(duì)稱軸,求g(x0)的值;
(Ⅱ)求函數(shù)h(x)=f(x)+g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是二次函數(shù),不等式f(x)<0的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)是否存在實(shí)數(shù)m,使得方程f(x)+
37x
=0
在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的最小正周期為π,為了得到函數(shù)g(x)=cosωx的圖象,只要將y=f(x)的圖象(  )
A、向左平移
π
8
個(gè)單位長(zhǎng)度
B、向右平移
π
8
個(gè)單位長(zhǎng)度
C、向左平移
π
4
個(gè)單位長(zhǎng)度
D、向右平移
π
4
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知
1
log2a
+
1
log3a
=2
,則a=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案