【題目】已如橢圓,四點中恰有三點在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)不經(jīng)過左焦點的直線交橢圓于A,B兩點,若直線、、的斜率依次成等差數(shù)列,求直線l的斜率k的取值范圍.
【答案】(1) (2)或.
【解析】
(1)先判斷在橢圓上,然后再代入坐標(biāo)進行判斷,即可求解出橢圓的方程;
(2)聯(lián)立直線與橢圓方程,根據(jù)斜率成等差數(shù)列求解出直線方程中之間的關(guān)系,再根據(jù)聯(lián)立后的一元二次方程的即可求解出斜率的取值范圍.
解:(1)由橢圓的對稱性,點在橢圓上,代入橢圓可得,,
若點在橢圓上,
則有,聯(lián)立無解,
所以點在橢圓上,代入橢圓可得,,
代入中解得,,
所以橢圓C的方程的為.
(2)由(1)可知,
設(shè)直線AB的方程為,,
聯(lián)立,
消y可得,,
則有,
由題意可知,,
化簡整理可得,,
若,則直線AB的方程為,過點,不滿足題意
所以,即,
化簡可得,,
代入①中得,,
整理可得,
解得,
所以直線l的斜率k的取值范圍為或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機APP軟件層出不窮.現(xiàn)從某市使用A和B兩款訂餐軟件的商家中分別隨機抽取100個商家,對它們的“平均送達時間”進行統(tǒng)計,得到頻率分布直方圖如下.
(1)已知抽取的100個使用A款訂餐軟件的商家中,甲商家的“平均送達時間”為18分鐘,F(xiàn)從使用A款訂餐軟件的商家中“平均送達時間”不超過20分鐘的商家中隨機抽取3個商家進行市場調(diào)研,求甲商家被抽到的概率;
(2)試估計該市使用A款訂餐軟件的商家的“平均送達時間”的眾數(shù)及平均數(shù);
(3)如果以“平均送達時間”的平均數(shù)作為決策依據(jù),從A和B兩款訂餐軟件中選擇一款訂餐,你會選擇哪款?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng),時,,其中,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(t為參數(shù)).直線與曲線分別交于兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,其離心率為.
(1)求橢圓的方程;
(2)若不經(jīng)過點的直線與橢圓相交于兩點,且,證明:直線經(jīng)過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從盛滿2升純酒精的容器里倒出1升純酒精,然后填滿水,再倒出1升混合溶液后又用水填滿,以此繼續(xù)下去,則至少應(yīng)倒 次后才能使純酒精體積與總?cè)芤旱捏w積之比低于10%.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,圓:經(jīng)過伸縮變換,后得到曲線以坐標(biāo)原點為極點,x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
求曲線的直角坐標(biāo)方程及直線l的直角坐標(biāo)方程;
在上求一點M,使點M到直線l的距離最小,并求出最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為、,過的直線與橢圓相交于、兩點.
(1)求 的周長;
(2)設(shè)點為橢圓的上頂點,點在第一象限,點在線段上.若,求點的橫坐標(biāo);
(3)設(shè)直線不平行于坐標(biāo)軸,點為點關(guān)于軸的對稱點,直線與軸交于點.求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,,,,的面積為.
(1)求橢圓的方程;
(2)過右焦點作與軸不重合的直線交橢圓于,兩點,連接,分別交直線于,,兩點,若直線,的斜率分別為,,試問:是否為定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com