給定橢圓C:=1(a>b>0),稱圓心在原點O、半徑是的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為F(,0),其短軸的一個端點到點F的距離為.

(1)求橢圓C和其“準圓”的方程;

(2)若點A是橢圓C的“準圓”與x軸正半軸的交點,B、D是橢圓C上的兩相異點,且BD⊥x軸,求·的取值范圍;

(3)在橢圓C的“準圓”上任取一點P,過點P作直線l1,l2,使得l1,l2與橢圓C都只有一個交點,試判斷l(xiāng)1,l2是否垂直?并說明理由.

 

(1)x2+y2=4(2)[0,7+4)(3)對于橢圓C上的任意點P,都有l(wèi)1⊥l2.

【解析】(1)由題意知c=,且a=,可得b=1,故橢圓C的方程為+y2=1,其“準圓”方程為x2+y2=4.

(2)由題意,可設B(m,n),D(m,-n)(-<m<),則有+n2=1,又A點坐標為(2,0),故=(m-2,n),=(m-2,-n),故·=(m-2)2-n2=m2-4m+4-m2-4m+3=,又-<m<,故∈[0,7+4],所以·的取值范圍是[0,7+4).

(3)設P(s,t),則s2+t2=4.當s=±時,t=±1,則l1,l2其中之一斜率不存在,另一斜率為0,顯然有l(wèi)1⊥l2.當s≠±時,設過P(s,t)且與橢圓有一個公共點的直線l的斜率為k,則l的方程為y-t=k(x-s),代入橢圓C方程可得x2+3[kx+(t-ks)]2=3,即(3k2+1)x2+6k(t-ks)x+3(t-ks)2-3=0,由Δ=36k2(t-ks)2-4(3k2+1)[3(t-ks)2-3]=0,可得(3-s2)k2+2stk+1-t2=0,其中3-s2=0,設l1,l2的斜率分別為k1,k2,則k1,k2是上述方程的兩個根,故k1k2==-1,即l1⊥l2.綜上可知,對于橢圓C上的任意點P,都有l(wèi)1⊥l2.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第4課時練習卷(解析版) 題型:填空題

已知AC、BD為圓O:x2+y2=4的兩條相互垂直的弦,垂足為M(1,),則四邊形ABCD的面積的最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

在平面直角坐標系xOy中,已知點A(-1,1),P是動點,且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.

(1)求點P的軌跡C的方程;

(2)若Q是軌跡C上異于點P的一個點,且=λ,直線OP與QA交于點M,問:是否存在點P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點P的坐標;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第11課時練習卷(解析版) 題型:解答題

如圖,在平面直角坐標系xOy中,橢圓的中心在原點O,右焦點F在x軸上,橢圓與y軸交于A、B兩點,其右準線l與x軸交于T點,直線BF交橢圓于C點,P為橢圓上弧AC上的一點.

(1)求證:A、C、T三點共線;

(2)如果=3,四邊形APCB的面積最大值為,求此時橢圓的方程和P點坐標.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題

已知橢圓=1(a>b>0)的離心率為,且過點P,A為上頂點,F(xiàn)為右焦點.點Q(0,t)是線段OA(除端點外)上的一個動點,

過Q作平行于x軸的直線交直線AP于點M,以QM為直徑的圓的圓心為N.

(1)求橢圓方程;

(2)若圓N與x軸相切,求圓N的方程;

(3)設點R為圓N上的動點,點R到直線PF的最大距離為d,求d的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.

(1)求橢圓C的方程;

(2)當△AMN的面積為時,求k的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第10課時練習卷(解析版) 題型:填空題

若斜率為的直線l與橢圓=1(a>b>0)有兩個不同的交點,且這兩個交點在x軸上的射影恰好是橢圓的兩個焦點,則該橢圓的離心率為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西工大附中高三上學期第四次適應性訓練理數(shù)學卷(解析版) 題型:選擇題

已知一個四面體有五條棱長都等于2,則該四面體的體積最大值為( )

A. B.1 C. D.2

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年陜西西安鐵一中國際合作學校高三下第一次模擬考試理科數(shù)學試卷(解析版) 題型:填空題

設函數(shù)則滿足的取值范圍是 .

 

查看答案和解析>>

同步練習冊答案