【題目】某公司生產(chǎn)的某批產(chǎn)品的銷售量萬件(生產(chǎn)量與銷售量相等)與促銷費用萬元滿足(其中,為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),產(chǎn)品的銷售價格定為元件.
(1)將該產(chǎn)品的利潤萬元表示為促銷費用萬元的函數(shù);
(2)促銷費用投入多少萬元時,該公司的利潤最大?
【答案】(1);
(2)當(dāng)時,促銷費用投入2萬元時,該公司的利潤最大;當(dāng)時,促銷費用投入萬元時,該公司的利潤最大.
【解析】
(1)根據(jù)產(chǎn)品的利潤銷售額產(chǎn)品的成本建立函數(shù)關(guān)系;
(2)利用導(dǎo)數(shù)基本不等式可求出該函數(shù)的最值,注意等號成立的條件.
解:(1)由題意知,,
將代入化簡得:;
(2),
當(dāng)且僅當(dāng),即時,上式取等號;
當(dāng)時,促銷費用投入2萬元時,該公司的利潤最大;
,,
時,函數(shù)在,上單調(diào)遞增,
時,函數(shù)有最大值.即促銷費用投入萬元時,該公司的利潤最大.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年11月18日國際射聯(lián)步手槍世界杯總決賽在莆田市綜合體育館開幕,這是國際射聯(lián)步手槍世界杯總決賽時隔10年再度走進中國.為了增強趣味性,并實時播報現(xiàn)場賽況,我校現(xiàn)場小記者李明和播報小記者王華設(shè)計了一套播報轉(zhuǎn)碼法,發(fā)送方由明文→密文(加密),接受方由密文→明文(解密),已知加密的方法是:密碼把英文的明文(真實文)按字母分解,其中英文的的26個字母(不論大小寫)依次對應(yīng)1,2,3,…,26這26個自然數(shù)通過變換公式:,將明文轉(zhuǎn)換成密文,如,即變換成,即變換成.若按上述規(guī)定,若王華收到的密文是,那么原來的明文是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為弘揚中華民族優(yōu)秀傳統(tǒng)文化,樹立正確的價值導(dǎo)向,落實立德樹人根本任務(wù),某市組織30000名高中學(xué)生進行古典詩詞知識測試,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機抽取100名學(xué)生,記錄他們的分數(shù),整理所得頻率分布直方圖如圖:
(Ⅰ)規(guī)定成績不低于60分為及格,不低于85分為優(yōu)秀,試估計此次測試的及格率及優(yōu)秀率;
(Ⅱ)試估計此次測試學(xué)生成績的中位數(shù);
(Ⅲ)已知樣本中有的男生分數(shù)不低于80分,且樣本中分數(shù)不低于80分的男女生人數(shù)相等,試估計參加本次測試30000名高中生中男生和女生的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面直角坐標(biāo)系中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線l的普通方程以及曲線C的參數(shù)方程;
(2)過曲線C上任意一點E作與直線l的夾角為的直線,交l于點F,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自由購是一種通過自助結(jié)算購物的形式.某大型超市為調(diào)查顧客自由購的使用情況,隨機抽取了100人,調(diào)查結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(1)現(xiàn)隨機抽取1名顧客,試估計該顧客年齡在[30,50)且未使用自由購的概率;
(2)從被抽取的年齡在[50,70]使用的自由購顧客中,隨機抽取2人進一步了解情況,求這2人年齡都在[50,60)的概率;
(3)為鼓勵顧客使用自由購,該超市擬對使用自由購顧客贈送1個環(huán)保購物袋.若某日該超市預(yù)計有5000人購物,試估計該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個環(huán)保購物袋?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”近年來成為了百姓耳熟能詳?shù)臒衢T詞匯,對于旅游業(yè)來說,“一帶一路”戰(zhàn)略的提出,讓“絲路之旅”超越了旅游產(chǎn)品、旅游線路的簡單范疇,賦予了旅游促進跨區(qū)域融合的新理念. 而其帶來的設(shè)施互通、經(jīng)濟合作、人員往來、文化交融更是將為相關(guān)區(qū)域旅游發(fā)展帶來巨大的發(fā)展機遇.為此,旅游企業(yè)們積極拓展相關(guān)線路;各地旅游主管部門也在大力打造絲路特色旅游品牌和服務(wù).某市旅游局為了解游客的情況,以便制定相應(yīng)的策略. 在某月中隨機抽取甲、乙兩個景點10天的游客數(shù),統(tǒng)計得到莖葉圖如下:
(1)若將圖中景點甲中的數(shù)據(jù)作為該景點較長一段時期內(nèi)的樣本數(shù)據(jù),以每天游客人數(shù)頻率作為概率.今從這段時期內(nèi)任取4天,記其中游客數(shù)超過130人的天數(shù)為,求概率 ;
(2)現(xiàn)從上圖20天的數(shù)據(jù)中任取2天的數(shù)據(jù)(甲、乙兩景點中各取1天),記其中游客數(shù)不低于125且不高于135人的天數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)求實數(shù)的值,使得為奇函數(shù);
(2)若關(guān)于的方程有兩個不同實數(shù)解,求的取值范圍;
(3)若關(guān)于的不等式對任意恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,的坐標(biāo)分別為,,直線和相交于點,且和的斜率之差是1.
(1)求點的軌跡的方程;
(2)過軌跡上的點,,作圓:的兩條切線,分別交軸于點,.當(dāng)的面積最小時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com