【題目】函數(shù)有相同的公切線,則實(shí)數(shù)a的取值范圍為_____________

【答案】

【解析】

分別求出導(dǎo)數(shù),設(shè)出切點(diǎn),得到切線的斜率,再由兩點(diǎn)的斜率公式,結(jié)合切點(diǎn)滿足曲線方程,運(yùn)用導(dǎo)數(shù)求得單調(diào)區(qū)間、極值和最值,即可得到a的范圍.

解:兩曲線yx21yalnx1存在公切線,

yx21的導(dǎo)數(shù)y′=2x,yalnx1的導(dǎo)數(shù)為y,

設(shè)yx21相切的切點(diǎn)為(n,n21)與曲線yalnx1相切的切點(diǎn)為(m,alnm1),

y﹣(n21)=2nxn),即y2nxn21,

y﹣(alnm1xm),即:y

,

有解即可,

gx)=x21lnx),

y′=2x1lnxx12lnx)=0,可得x,

gx)在(0)是增函數(shù);(,+∞)是減函數(shù),

gx)的最大值為:g,

g0)=0,

,∴a2e

故答案為:(﹣∞,2e]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩個(gè)班級(jí)均為 40 人,進(jìn)行一門考試后,按學(xué)生考試成績及格與不及格進(jìn)行統(tǒng)計(jì),甲班及格人數(shù)為 36 人,乙班及格人數(shù)為 24 人.

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)22的列聯(lián)表;

(2)試判斷是否成績與班級(jí)是否有關(guān)?

參考公式:;

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

0.455

0.708

1.323

2.072

2.706

3.84

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù),其中

)若的極值點(diǎn),求的值;

)求的單調(diào)區(qū)間;

)若上的最大值是,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過定點(diǎn)且與軸相切,點(diǎn)關(guān)于圓心的對(duì)稱點(diǎn)為,點(diǎn)的軌跡為.

1)求曲線的方程;

2)一條直線經(jīng)過點(diǎn),且交曲線、兩點(diǎn),點(diǎn)為直線上的動(dòng)點(diǎn).

①求證:不可能是鈍角;

②是否存在這樣的點(diǎn),使得是正三角形?若存在,求點(diǎn)的坐標(biāo):否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),過動(dòng)點(diǎn)作直線的垂線,垂足為,且.記動(dòng)點(diǎn)的軌跡為曲線.

1)求曲線的方程;

2)過點(diǎn)的直線交曲線于不同的兩點(diǎn),.

①若為線段的中點(diǎn),求直線的方程;

②設(shè)關(guān)于軸的對(duì)稱點(diǎn)為,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),過點(diǎn)軸的垂線交函數(shù)圖象于點(diǎn),以為切點(diǎn)作函數(shù)圖象的切線交軸于點(diǎn),再過軸的垂線交函數(shù)圖象于點(diǎn),,以此類推得點(diǎn),記的橫坐標(biāo)為,

1)證明數(shù)列為等比數(shù)列并求出通項(xiàng)公式;

2)設(shè)直線與函數(shù)的圖象相交于點(diǎn),記(其中為坐標(biāo)原點(diǎn)),求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十五巧板,又稱益智圖,為清朝浙江省德清知縣童葉庚在同治年間所發(fā)明,它能拼出草木、花果、鳥獸、魚蟲、文字等圖案.十五巧板由十五塊板組成一個(gè)大正方形(如圖1),其中標(biāo)號(hào)為的小板為等腰直角三角形,圖是用十五巧板拼出的2019年生肖豬的圖案,則從生肖豬圖案中任取一點(diǎn),該點(diǎn)恰好取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在所有棱長都相等的三棱柱中,.

1)證明:;

2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)口袋中裝有大小形狀完全相同的個(gè)乒乓球,其中1個(gè)乒乓球上標(biāo)有數(shù)字1,2個(gè)乒乓球上標(biāo)有數(shù)字2,其余個(gè)乒乓球上均標(biāo)有數(shù)字3,若從這個(gè)口袋中隨機(jī)地摸出2個(gè)乒乓球,恰有一個(gè)乒乓球上標(biāo)有數(shù)字2的概率是.

(1)求的值;

(2)從口袋中隨機(jī)地摸出2個(gè)乒乓球,設(shè)表示所摸到的2個(gè)乒乓球上所標(biāo)數(shù)字之積,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案