10.已知集合M={x|2x2-3x-2=0},集合N={x|ax=1},若N?M,那么a的值是0或-2或$\frac{1}{2}$.

分析 化簡集合M,根據(jù)N?M,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.

解答 解:集合M={x|2x2-3x-2=0}={2,$-\frac{1}{2}$},集合N={x|ax=1},
∵N?M,
∴當(dāng)N=∅時(shí),滿足題意,此時(shí)ax=1無解,可得a=0;
當(dāng)N≠∅時(shí),此時(shí)ax=1有解,x=$\frac{1}{a}$,要使N?M成立,
則有:$\frac{1}{a}=2$或$\frac{1}{a}=-\frac{1}{2}$
解得:a=$\frac{1}{2}$或a=-2;
故答案為:0或-2或$\frac{1}{2}$.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.為得到函數(shù)y=sin2x+cos2x的圖象,只需將函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{4}$個(gè)長度單位
B.向右平移$\frac{π}{4}$個(gè)長度單位
C.向左平移$\frac{π}{8}$個(gè)長度單位,縱坐標(biāo)伸長到原來的$\sqrt{2}$倍
D.向右平移$\frac{π}{8}$個(gè)長度單位,縱坐標(biāo)伸長到原來的$\sqrt{2}$倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知冪函數(shù)f(x)=(-2m2+m+2)x-2m+1為偶函數(shù).
(1)求f(x)的解析式;
(2)若函數(shù)y=f(x)-2(a-1)x+1在區(qū)間(2,3)上有最小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=-lnx+ax2+bx-a-2b有兩個(gè)極值點(diǎn)x1,x2,其中-$\frac{1}{2}$<a<0,b>0,且f(x2)=x2>x1,則方程2a[f(x)]2+bf(x)-1=0的實(shí)根個(gè)數(shù)為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在(2x3-$\frac{1}{{\sqrt{x}}}}$)n的展開式中,各二項(xiàng)式系數(shù)的和為128,則常數(shù)項(xiàng)是14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.執(zhí)行如圖的程序框圖,若輸入的x的值為1,則輸出的y的值是( 。
A.4B.13C.16D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a,b,c分別是△ABC的內(nèi)角A,B,C,所對的邊長,且a=c,滿足cosC+(cosA-$\sqrt{3}$sinA)cosB=0.
(1)求角B的大;
(2)若點(diǎn)O是△ABC外一點(diǎn),OA=2OB=4,記∠AOB=α,用含α的三角函數(shù)式表示平面四邊形OACB面積并求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正方形ABCD中,點(diǎn)E在BC上,連接AE,過點(diǎn)B作BF⊥AE于點(diǎn)G,交CD于點(diǎn)F.
(1)如圖1,連接AF,若AB=4,BE=1,求AF的長;
(2)如圖2,連接BD,交AE于點(diǎn)N,連接AC,分別交BD、BF于點(diǎn)O、M,連接GO,求證:GO平分∠AGF;
(3)如圖3,在第(2)問的條件下,連接CG,若CG⊥GO,求證:AG=$\sqrt{2}$CG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知定義域?yàn)镽的函數(shù)f(x)滿足:f(x+3)=2f(x+2)-x.若f(1)=2,則f(3)=10.

查看答案和解析>>

同步練習(xí)冊答案